Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(32): 6384-6389, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39081238

RESUMO

Control of frictional interactions among liquid-suspended particles has led to tunable, strikingly non-Newtonian rheology via the formation of strong flow constraints as particles come into close proximity under shear. Typically, these frictional interactions have been in the form of physical contact, controllable via particle shape and surface roughness. We investigate a different route, where molecular bridging between nearby particle surfaces generates a controllable constraint to relative particle movement. This is achieved with surface-functionalized colloidal particles capable of forming dynamic covalent bonds with telechelic polymers that comprise the suspending fluid. At low shear stress this results in particles coated with a uniform polymer brush layer. Beyond an onset stress σ* the telechelic polymers become capable of bridging and generate shear thickening. Over the size range investigated, we find that the dynamic brush layer leads to dependence of σ* on particle diameter that closely follows a power law with exponent -1.76. In the shear thickening regime, we observe an enhanced dilation in measurements of the first normal stress difference N1 and reduction in the extrapolated volume fraction required for jamming, both consistent with an effective particle friction that increases with decreasing particle diameter. These results are discussed in light of predictions for suspensions of hard spheres and of polymer-grafted particles.

2.
ACS Cent Sci ; 9(4): 639-647, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122459

RESUMO

Suspensions of polymeric nano- and microparticles are fascinating stress-responsive material systems that, depending on their composition, can display a diverse range of flow properties under shear, such as drastic thinning, thickening, and even jamming (reversible solidification driven by shear). However, investigations to date have almost exclusively focused on nonresponsive particles, which do not allow in situ tuning of the flow properties. Polymeric materials possess rich phase transitions that can be directly tuned by their chemical structures, which has enabled researchers to engineer versatile adaptive materials that can respond to targeted external stimuli. Reported herein are suspensions of (readily prepared) micrometer-sized polymeric particles with accessible glass transition temperatures (T g) designed to thermally control their non-Newtonian rheology. The underlying mechanical stiffness and interparticle friction between particles change dramatically near T g. Capitalizing on these properties, it is shown that, in contrast to conventional systems, a dramatic and nonmonotonic change in shear thickening occurs as the suspensions transition through the particles' T g. This straightforward strategy enables the in situ turning on (or off) of the system's ability to shear jam by varying the temperature relative to T g and lays the groundwork for other types of stimuli-responsive jamming systems through polymer chemistry.

3.
Macromolecules ; 55(15): 6453-6461, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35966116

RESUMO

The non-Newtonian behaviors of dense suspensions are central to their use in technological and industrial applications and arise from a network of particle-particle contacts that dynamically adapt to imposed shear. Reported herein are studies aimed at exploring how dynamic covalent chemistry between particles and the polymeric solvent can be used to tailor such stress-adaptive contact networks, leading to their unusual rheological behaviors. Specifically, a room temperature dynamic thia-Michael bond is employed to rationally tune the equilibrium constant (K eq) of the polymeric solvent to the particle interface. It is demonstrated that low K eq leads to shear thinning, while high K eq produces antithixotropy, a rare phenomenon where the viscosity increases with shearing time. It is proposed that an increase in K eq increases the polymer graft density at the particle surface and that antithixotropy primarily arises from partial debonding of the polymeric graft/solvent from the particle surface and the formation of polymer bridges between particles. Thus, the implementation of dynamic covalent chemistry provides a new molecular handle with which to tailor the macroscopic rheology of suspensions by introducing programmable time dependence. These studies open the door to energy-absorbing materials that not only sense mechanical inputs and adjust their dissipation as a function of time or shear rate but also can switch between these two modalities on demand.

4.
Phys Rev E ; 99(2-1): 020901, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934253

RESUMO

We report on a nonequilibrium phase of matter, the minimally disordered crystal phase, which we find exists between the maximally amorphous glasses and the ideal crystal. Even though these near crystals appear highly ordered, they display glassy and jamming features akin to those observed in amorphous solids. Structurally, they exhibit a power-law scaling in their probability distribution of weak forces and small interparticle gaps as well as a flat density of vibrational states. Dynamically, they display anomalous aging above a characteristic pressure. Quantitatively, this disordered crystal phase has much in common with the Gardner-like phase seen in maximally disordered solids. Near crystals should be amenable to experimental realizations in commercially available particulate systems and are to be indispensable in verifying the theory of amorphous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA