Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(24): 14538-14546, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30481451

RESUMO

The high energy consumption of CO2 and absorbent regeneration is one of the most critical challenges facing commercial application of amine-based postcombustion CO2 capture. Here, we report a novel approach of metal-ion-mediated amine regeneration (MMAR) to advance the process of amine regeneration. MMAR uses the dual ability of amine to reversibly react with CO2 and reversibly complex with metal ions to reduce the enthalpy of the CO2 reaction, thus decrease the overall heat requirement for amine regeneration. To elucidate the mechanistic effects behind MMAR's ability to reduce CO2 reaction enthalpy, we developed a comprehensive chemical model describing the chemistry of Me(II)-monoethanolamine(MEA)-CO2-H2O system. The model was then validated using experimentally determined CO2 partial pressures via vapor-liquid equilibrium (VLE) measurements. We used the validated chemical model to gain insight into VLE behavior and solution chemistry, and to identify the specific changes in CO2 reaction enthalpy with and without metal ions. Two metals and five amines were evaluated in detail, which revealed that metal-ions with high complexation enthalpy and amines with large carbamate stability constant are preferred in MMAR, owing to their large reduction in reaction enthalpy and regeneration duty. We anticipate that MMAR could provide an alternative pathway to reducing the energy consumption of absorbent regeneration, ultimately making amine-based processes more technically and economically viable.


Assuntos
Aminas , Dióxido de Carbono , Íons , Metais , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA