RESUMO
BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. METHODS: In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1ß or TNF-α. RESULTS: We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1ß or TNF-α induced MCP-1 and IL-6 secretion. CONCLUSIONS: This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD.
Assuntos
Doença de Alzheimer/patologia , Astrócitos/enzimologia , Encéfalo/patologia , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Astrócitos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Caseína Quinase II/metabolismo , Células Cultivadas , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Naftiridinas/farmacologia , FenazinasRESUMO
The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context.
Assuntos
RNA não Traduzido/genética , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Modelos Animais , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
INTRODUCTION: We performed a comprehensive quantitative proteomics study on human hippocampus tissue involving all Braak stages to assess changes in protein abundance over the various stages of Alzheimer's disease (AD). METHODS: Hippocampal subareas CA1 and subiculum of 40 cases were isolated using laser capture microdissection and analyzed using mass spectrometry. Immunoblotting and immunohistochemistry were used for validation. RESULTS: Over the Braak stages, an altered expression was found for 372 proteins including changes in levels of extracellular matrix components, and in calcium-dependent signaling proteins. Early changes were observed in levels of proteins related to cytoskeletal dynamics and synaptic components including an increase in RIMS1 and GRIK4. Several synaptic proteins, such as BSN, LIN7A, DLG2, -3, and -4, exhibit an early-up, late-down expression pattern. DISCUSSION: This study provides new insight into AD-dependent changes in protein levels in the hippocampus during AD pathology, identifying potential novel therapeutic targets and biomarkers.
Assuntos
Doença de Alzheimer/patologia , Região CA1 Hipocampal/metabolismo , Proteoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Microdissecção e Captura a Laser , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Proteômica , Escalas de Graduação Psiquiátrica , Transdução de SinaisRESUMO
BACKGROUND: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa ß-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and neurofibrillary degeneration, and it is elusive whether prion amyloid is associated with these changes as well. OBJECTIVES: The presence of inflammation and neurofibrillary degeneration was evaluated in prion amyloidosis. MATERIAL AND METHODS: Cortical areas of variant Creutzfeldt-Jakob disease (CJD; n = 3), young sporadic CJD (n = 4), different Gerstmann-Sträussler-Scheinker's disease patients (n = 5) and AD cases (n = 5) were examined using immunohistochemistry and specific stainings for amyloid. RESULTS: In both AD and prion disease cases, which were negative for 4-kDa ß-amyloid, parenchymal and vascular amyloid deposits were positive for amyloid-associated proteins such as complement protein and were associated with microglia clusters. Tau and ubiquitin were found near prion plaques in some of the Gerstmann-Sträussler-Scheinker's disease and sporadic CJD cases and also near vascular prion amyloid deposits. In variant CJD cases, occasionally, microglia clustering was found in plaques but no ubiquitin or complement proteins and hardly tau protein. CONCLUSIONS: In both AD and prion disease amyloid formation, irrespective of the protein involved, there seems to be a neuroinflammatory response with secondary neurofibrillary degeneration.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Mudanças Depois da Morte , Proteínas tau/metabolismoRESUMO
BACKGROUND: Identification of signal transduction pathways that are critically involved in Alzheimer's disease (AD) is essential for the development of disease-specific biomarkers and drug therapy. OBJECTIVE: This study is aimed at identifying protein kinases and signaling pathways that are activated in AD pathology. METHODS: Microarray-based kinome profiling was employed for the detection of protein kinase activity in postmortem brain tissue derived from AD and age-matched nondemented control cases. Global serine/threonine kinase activity profiles are identified applying a peptide array system consisting of 140 peptides derived from known kinase substrate sequences covalently attached to porous chips, through which a protein solution is constantly pumped up and down. Peptide phosphorylation is determined by measuring the association of a mixture of fluorescently labeled antibodies, raised against phosphoserine- or phosphothreonine-containing peptides. RESULTS: Protein lysates from freshly frozen postmortem brain tissue from nondemented controls and pathologically confirmed AD cases show ATP-dependent phosphorylation of peptides. In AD and control cases, peptides that are differentially phosphorylated are identified. CONCLUSION: Protein kinase activity profiling can be used to reveal novel kinases and new signaling pathways involved in AD pathology.
Assuntos
Encéfalo/enzimologia , Proteínas Quinases/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Mudanças Depois da Morte , Análise Serial de Proteínas/métodos , Transdução de Sinais/fisiologiaRESUMO
INTRODUCTION: ß-Amyloid (Aß) accumulation in cortical capillaries is a variant of cerebral amyloid angiopathy (CAA) referred to as capillary CAA (capCAA). capCAA is associated with a neuroinflammatory response. In vitro studies indicate that Aß induces reactive oxygen species (ROS) production, mainly generated through NADPH oxidase (NOX), by activated microglia. ROS in turn can induce altered expression of tight junctions (TJ), which are essential for blood-brain barrier (BBB) function. Whether the function of the BBB is affected in the brains of Alzheimer's disease (AD) patients with comorbid capCAA remains elusive. Cases with capCAA and no other AD-related changes allow studying capCAA-associated BBB alterations independent of AD pathology. AIM: In this study, we have investigated BBB alterations in capCAA and addressed the role of the neuroinflammatory response. METHODS: Human postmortem brain tissue with capCAA was analyzed by immunohistochemical staining. RESULTS: In this study, we show for the first time a dramatic loss of TJ proteins claudin-5, occludin and ZO-1 in Aß-laden capillaries. In addition, affected capillaries are associated with clusters of NOX-2-positive activated microglia. Disrupted BBB function was observed by increased presence of fibrinogen around the affected capillaries. CONCLUSIONS: Our data provide support for the early observation that neuroinflammatory response is involved in the altered expression of TJs in endothelial cells and loss of BBB integrity in capCAA.
Assuntos
Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Capilares/patologia , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/patologia , Encefalite/etiologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Sanguíneas/metabolismo , Capilares/metabolismo , Claudina-5 , Claudinas/metabolismo , Estudos de Coortes , Encefalite/complicações , Encefalite/patologia , Fibrinogênio/metabolismo , Humanos , Proteínas de Membrana/metabolismo , NADPH Oxidases , Ocludina , Fosfoproteínas/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1RESUMO
Propagation of bacteriophage T4 in its host Escherichia coli involves the folding of the major capsid protein gp23, which is facilitated by a hybrid chaperone complex consisting of the bacterial chaperonin GroEL and the phage-encoded co-chaperonin, gp31. It has been well established that the GroEL-gp31 complex is capable of folding gp23 whereas the homologous GroEL-GroES complex cannot perform this function. To assess whether this is a consequence of differences in the interactions of the proteins within the chaperonin complex, we have investigated the dissociation kinetics of GroEL-gp31 and GroEL-GroES complexes using Forster resonance energy transfer. Here we report that the dissociation of gp31 from GroEL is slightly faster than that of GroES from GroEL and is further accelerated by the binding of gp23. In contrast to what had been observed previously, we found that gp23 is able to interact with the GroEL-GroES complex, which might explain how bacteriophage T4 redirects the folding machinery of Escherichia coli during morphogenesis.
Assuntos
Bacteriófago T4/metabolismo , Chaperonina 60/metabolismo , Proteínas Virais/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/crescimento & desenvolvimento , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteínas Virais/genéticaRESUMO
The productive folding of substrate proteins by the GroEL complex of Escherichia coli requires the activity of both the chaperonin rings. These heptameric rings were shown to regulate the chaperonins' affinity for substrates and co-chaperonin via inter-ring communications; however, the molecular details of the interactions are not well understood. We have investigated the effect of substrate binding on inter-ring communications of the chaperonin complex, both the double-ring GroEL as well as the single-ring SR1 chaperonin in complex with four different substrates by using mass spectrometry. This approach shows that whereas SR1 is unable to distinguish between Rubisco, gp23, gp5, and MDH, GroEL shows clear differences upon binding these substrates. The most distinctive binding behavior is observed for Rubisco, which only occupies one GroEL ring. Both bacteriophage capsid proteins (gp23 and gp5) as well as MDH are able to bind to the two GroEL rings simultaneously. Our data suggest that inter-ring communication allows the chaperonin complex to differentiate between substrates. Using collision induced dissociation in the gas phase, differences between the chaperonin(substrate) complexes are observed only when both rings are present. The data indicate that the size of the substrate is an important factor that determines the degree of stabilization of the chaperonin complex.
Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Bacteriófago T4/metabolismo , Proteínas do Capsídeo/metabolismo , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato , Espectrometria de Massas em TandemRESUMO
Bacteriophage T4 produces a GroES analogue, gp31, which cooperates with the Escherichia coli GroEL to fold its major coat protein gp23. We have used cryo-electron microscopy and image processing to obtain three-dimensional structures of the E.coli chaperonin GroEL complexed with gp31, in the presence of both ATP and ADP. The GroEL-gp31-ADP map has a resolution of 8.2 A, which allows accurate fitting of the GroEL and gp31 crystal structures. Comparison of this fitted structure with that of the GroEL-GroES-ADP structure previously determined by cryo-electron microscopy shows that the folding cage is expanded. The enlarged volume for folding is consistent with the size of the bacteriophage coat protein gp23, which is the major substrate of GroEL-gp31 chaperonin complex. At 56 kDa, gp23 is close to the maximum size limit of a polypeptide that is thought to fit inside the GroEL-GroES folding cage.
Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 10/ultraestrutura , Chaperonina 60/ultraestrutura , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína , Proteínas Virais/ultraestruturaRESUMO
The bacteriophage T4 capsid protein gp23 was studied using time-resolved and steady-state fluorescence of the intrinsic protein fluorophore tryptophan. In-vitro gp23 consists mostly of monomers at low temperature but forms hexamers at room temperature. To extend our knowledge of the structure and hexamerization characteristics of gp23, the temperature-dependent fluorescence properties of a tryptophan mutant (W13V) were compared to those of wild-type gp23. The W13V mutation is located in the N-terminal part of the protein, which is cleaved off after prohead formation in the live bacteriophage. Results show that W13 plays a role in the hexamerization process but is not needed to stabilize the hexamer once it is formed. Furthermore, besides the monomer-to-hexamer temperature transition (15-23 degrees C and 12-43 degrees C for wild-type and W13V gp23, respectively), we were able to observe denaturation of the N-terminus in hexameric wild-type gp23 around 40 degrees C. In addition, with the aid of a recently published homology model of gp23, the lifetimes obtained from time-resolved fluorescence measurements could tentatively be assigned to specific tryptophan residues.
Assuntos
Proteínas do Capsídeo/química , Mutação , Triptofano/química , Valina/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Modelos Moleculares , Espectrometria de Fluorescência , Fatores de TempoRESUMO
Alzheimer's disease (AD) is characterized by a long pre-clinical phase (20-30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention.
Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Hipocampo/enzimologia , Hipocampo/patologia , Proteínas Quinases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de DoençaRESUMO
The time-resolved fluorescence properties of the bacteriophage T4 capsid protein gp23 are investigated. The structural characteristics of this protein are largely unknown and can be probed by recording time-resolved and decay-associated fluorescence spectra and intensity decay curves using a 200 ps-gated intensified CCD-camera. Spectral and decay data are recorded simultaneously, which makes data acquisition fast compared to time-correlated single-photon counting. A red-shift of the emission maximum within the first nanosecond of decay is observed, which can be explained by the different decay-associated spectra of fluorescence lifetimes of the protein in combination with dipolar relaxation. In addition, iodide quenching experiments are performed, to study the degree of exposure of the various tryptophan residues. A model for the origin of the observed lifetimes of 0.032 +/- 0.003, 0.39 +/- 0.06, 2.1 +/- 0.1 and 6.8 +/- 0.8 ns is presented: the 32 ps lifetime can be assigned to the emission of a buried tryptophan residue, the 0.4 and 2.1 ns lifetimes to two partly buried residues, and the 6.8 ns lifetime to a single tryptophan outside the bulk of the folded gp23.
Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Fluorescência , Iodetos , Espectrometria de Fluorescência , Fatores de TempoRESUMO
BACKGROUND: Studies investigating the diagnostic accuracy of biomarkers for Alzheimer's disease (AD) are typically performed using the clinical diagnosis or amyloid-ß positron emission tomography as the reference test. However, neither can be considered a gold standard or a perfect reference test for AD. Not accounting for errors in the reference test is known to cause bias in the diagnostic accuracy of biomarkers. OBJECTIVE: To determine the diagnostic accuracy of AD biomarkers while taking the imperfectness of the reference test into account. METHODS: To determine the diagnostic accuracy of AD biomarkers and taking the imperfectness of the reference test into account, we have developed a Bayesian method. This method establishes the biomarkers' true value in predicting the AD-pathology status by combining the reference test and the biomarker data with available information on the reliability of the reference test. The new methodology was applied to two clinical datasets to establish the joint accuracy of three cerebrospinal fluid biomarkers (amyloid-ß 1 - 42, Total tau, and P-tau181p) by including the clinical diagnosis as imperfect reference test into the analysis. RESULTS: The area under the receiver-operating-characteristics curve to discriminate between AD and controls, increases from 0.949 (with 95% credible interval [0.935,0.960]) to 0.990 ([0.985,0.995]) and from 0.870 ([0.817,0.912]) to 0.975 ([0.943,0.990]) for the cohorts, respectively. CONCLUSIONS: Use of the Bayesian methodology enables an improved estimate of the exact diagnostic value of AD biomarkers and overcomes the lack of a gold standard for AD. Using the new method will increase the diagnostic confidence for early stages of AD.
Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Teorema de Bayes , Estudos de Coortes , Bases de Dados Factuais/estatística & dados numéricos , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Curva ROC , Valores de Referência , Proteínas tau/líquido cefalorraquidianoRESUMO
Synaptic dysfunction occurs early in the progression of Alzheimer's disease (AD) and correlates with memory decline. There is emerging evidence that deregulation of Erythropoietin-producing hepatocellular (Eph) receptor tyrosine kinases (RTK) signaling contributes to the aberrant synaptic functions associated with neurodegeneration. The Eph receptor A4 is highly expressed in human adult hippocampal brain tissue and was previously linked to cognitive impairment in a transgenic mouse model for AD. Whether EphA4 levels are altered in AD brain remains elusive. Therefore we investigated the protein levels and localization of EphA4 in human hippocampus derived from AD (n = 29) as well as non-demented control cases (n = 19). The total EphA4 protein levels were not changed in AD patients compared to control cases. However, immunohistochemical localization of EphA4 revealed an altered distribution in AD compared to control hippocampus. EphA4 immunoreactivity was observed in plaque-like structures in AD cases. Double-labelling with phosphorylated tau and amyloid beta indicates that EphA4 co-localizes with neuritic plaques in AD. This altered distribution pattern was observed at early stages (Braak stage II) and correlates with the hallmarks of AD pathology suggesting a reduced availability of EphA4 that is likely to contribute to synaptic dysfunction that occurs early in AD.
Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Receptor EphA4/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Amiloide/metabolismo , Receptor EphA4/análise , Proteínas tau/metabolismoRESUMO
Cerebral amyloid angiopathy (CAA) is frequently observed in Alzheimer's disease (AD) and is characterized by deposition of amyloid beta (Aß) in leptomeningeal and cortical brain vasculature. In 40% of AD cases, Aß mainly accumulates in cortical capillaries, a phenomenon referred to as capillary CAA (capCAA). The aim of this study was to investigate blood-brain barrier (BBB) alterations in CAA-affected capillaries with the emphasis on tight junction (TJ) changes. First, capCAA brain tissue was analyzed for the distribution of TJs. Here, we show for the first time a dramatic loss of occludin, claudin-5, and ZO-1 in Aß-laden capillaries surrounded by NADPH oxidase-2 (NOX-2)-positive activated microglia. Importantly, we observed abundant vascular expression of the Aß transporter receptor for advanced glycation endproducts (RAGE). To unravel the underlying mechanism, a human brain endothelial cell line was stimulated with Aß1-42 to analyze the effects of Aß. We observed a dose-dependent cytotoxicity and increased ROS generation, which interestingly was reversed by administration of exogenous antioxidants, NOX-2 inhibitors, and by blocking RAGE. Taken together, our data evidently show that Aß is toxic to brain endothelial cells via binding to RAGE and induction of ROS production, which ultimately leads to disruption of TJs and loss of BBB integrity.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Barreira Hematoencefálica/metabolismo , Capilares/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Estresse Oxidativo , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/farmacologia , Capilares/patologia , Linhagem Celular , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microglia/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Ocludina , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1RESUMO
Many biological active proteins are assembled in protein complexes. Understanding the (dis)assembly of such complexes is therefore of major interest. Here we use mass spectrometry to monitor the disassembly induced by thermal activation of the heptameric co-chaperonins GroES and gp31. We use native electrospray ionization mass spectrometry (ESI-MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer to monitor the stoichiometry of the chaperonins. A thermally controlled electrospray setup was employed to analyze conformational and stoichiometric changes of the chaperonins at varying temperature. The native ESI-MS data agreed well with data obtained from fluorescence spectroscopy as the measured thermal dissociation temperatures of the complexes were in good agreement. Furthermore, we observed that thermal denaturing of GroES and gp31 proceeds via intermediate steps of all oligomeric forms, with no evidence of a transiently stable unfolded heptamer. We also evaluated the thermal dissociation of the chaperonins in the gas phase using infrared multiphoton dissociation (IRMPD) for thermal activation. Using gas-phase activation the smaller (2-4) oligomers were not detected, only down to the pentamer, whereafter the complex seemed to dissociate completely. These results demonstrate clearly that conformational changes of GroES and gp31 due to heating in solution and in the gas phase are significantly different.
Assuntos
Chaperonina 10/química , Espectrometria de Massas/métodos , Dobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Proteínas Virais/química , Chaperoninas/química , Conformação Proteica , TemperaturaRESUMO
Cdc37p, the p50 homolog of Saccharomyces cerevisiae, is an Hsp90 cochaperone involved in the targeting of protein kinases to Hsp90. Here we report a role for Cdc37p in osmoadaptive signalling in this yeast. The osmosensitive phenotype that is displayed by the cdc37-34 mutant strain appears not to be the consequence of deficient signalling through the high osmolarity glycerol (HOG) MAP kinase pathway. Rather, Cdc37p appears to play a role in the filamentous growth (FG) pathway, which mediates adaptation to high osmolarity parallel to the HOG pathway. The osmosensitive phenotype of the cdc37-34 mutant strain is aggravated upon the deletion of the HOG gene. We report that the hyper-osmosensitive phenotype of the cdc37-34, hog1 mutant correlates to a reduced of activity of the FG pathway. We utilized this phenotype to isolate suppressor genes such as KSS1 that encodes a MAP kinase that functions in the FG pathway. We report that Kss1p interacts physically with Cdc37p. Like Kss1p, the second suppressor that we isolated, Dse1p, is involved in cell wall biogenesis or maintenance, suggesting that Cdc37p controls osmoadapation by regulating mitogen-activated protein kinase signalling aimed at adaptive changes in cell wall organization.
Assuntos
Adaptação Fisiológica/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Chaperonas Moleculares/genética , Mutação , Pressão Osmótica , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Glicerol/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Proteínas de Domínio MADS , Pressão Osmótica , Fosforilação , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
Incorrect folding of proteins in living cells may lead to malfunctioning of the cell machinery. To prevent such cellular disasters from happening, all cells contain molecular chaperones that assist nonnative proteins in folding into the correct native structure. One of the most studied chaperone complexes is the GroEL-GroES complex. The GroEL part has a "double-barrel" structure, which consists of two cylindrical chambers joined at the bottom in a symmetrical fashion. The hydrophobic rim of one of the GroEL chambers captures nonnative proteins. The GroES part acts as a lid that temporarily closes the filled chamber during the folding process. Several capture-folding-release cycles are required before the nonnative protein reaches its native state. Here we report molecular simulations that suggest that translocation of the nonnative protein through the equatorial plane of the complex boosts the efficiency of the chaperonin action. If the target protein is correctly folded after translocation, it is released. However, if it is still nonnative, it is likely to remain trapped in the second chamber, which then closes to start a reverse translocation process. This shuttling back and forth continues until the protein is correctly folded. Our model provides a natural explanation for the prevalence of double-barreled chaperonins. Moreover, we argue that internal folding is both more efficient and safer than a scenario where partially refolded proteins escape from the complex before being recaptured.
Assuntos
Chaperonina 10/química , Chaperonina 10/ultraestrutura , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Transporte Proteico , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Dobramento de ProteínaRESUMO
Exposure of Saccharomyces cerevisiae to high osmotic stress evokes a number of adaptive changes that are necessary for its survival. These adaptive responses are mediated via multiple mitogen-activated protein kinase pathways, of which the high-osmolarity glycerol (HOG) pathway has been studied most extensively. Yeast strains that bear the hsp82T22I or hsp82G81S mutant alleles are osmosensitive. Interestingly, the osmosensitive phenotype is not due to inappropriate functioning of the HOG pathway, as Hog1p phosphorylation and downstream responses including glycerol accumulation are not affected. Rather, the hsp82 mutants display features that are characteristic for cell-wall mutants, i.e. resistance to Zymolyase and sensitivity to Calcofluor White. The osmosensitivity of the hsp82T22I or hsp82G81S strains is suppressed by over-expression of the Hsp90 co-chaperone Cdc37p but not by other co-chaperones. Hsp90 is shown to be required for proper adaptation to high osmolarity via a novel signal transduction pathway that operates parallel to the HOG pathway and requires Cdc37p.