Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Horiz ; 10(7): 2627-2637, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185815

RESUMO

Magnetoelectricity enables a solid-state material to generate electricity under magnetic fields. Most magnetoelectric composites are developed through a strain-mediated route by coupling piezoelectric and magnetostrictive phases. However, the limited availability of high-performance magnetostrictive components has become a constraint for the development of novel magnetoelectric materials. Here, we demonstrate that nanostructured composites of magnetic and pyroelectric materials can generate electrical output, a phenomenon we refer to as the magnetopyroelectric (MPE) effect, which is analogous to the magnetoelectric effect in strain-mediated composite multiferroics. Our composite consists of magnetic iron oxide nanoparticles (IONPs) dispersed in a ferroelectric (and also pyroelectric) poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. Under a high-frequency low-magnitude alternating magnetic field, the IONPs generate heat through hysteresis loss, which stimulates the depolarization process of the pyroelectric polymer. This magnetopyroelectric approach creates a new opportunity to develop magnetoelectric materials for a wide range of applications.

2.
Adv Mater ; 34(19): e2110612, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35276030

RESUMO

Magnetic fields have been regarded as an additional stimulus for electro- and photocatalytic reactions, but not as a direct trigger for catalytic processes. Multiferroic/magnetoelectric materials, whose electrical polarization and surface charges can be magnetically altered, are especially suitable for triggering and control of catalytic reactions solely with magnetic fields. Here, it is demonstrated that magnetic fields can be employed as an independent input energy source for hydrogen harvesting by means of the magnetoelectric effect. Composite multiferroic CoFe2 O4 -BiFeO3 core-shell nanoparticles act as catalysts for the hydrogen evolution reaction (HER), which is triggered when an alternating magnetic field is applied to an aqueous dispersion of the magnetoelectric nanocatalysts. Based on density functional calculations, it is proposed that the hydrogen evolution is driven by changes in the ferroelectric polarization direction of BiFeO3 caused by the magnetoelectric coupling. It is believed that the findings will open new avenues toward magnetically induced renewable energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA