Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 37(4): e14058, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36661056

RESUMO

Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future.


Identificación de los factores biofísicos y socioeconómicos que impulsan la pérdida de bosques en las áreas protegidas Resumen Las áreas protegidas son una estrategia de uso común para hacer frente a la conversión forestal y la pérdida de biodiversidad. Aunque determinar los factores que impulsan la pérdida de bosques es fundamental para el éxito de la conservación, su comprensión se ve limitada por los supuestos de modelación convencionales. Utilizamos la regresión de bosques aleatorios para evaluar los posibles impulsores de la deforestación en las áreas protegidas de México, considerando las relaciones no lineales y las interacciones de orden superior que subyacen a los procesos de deforestación. Los impulsores socioeconómicos (densidad de carreteras, densidad de población humana) y las condiciones biofísicas subyacentes (precipitaciones, distancia al agua, elevación, pendiente) fueron predictores más fuertes de la pérdida de bosques que las características de las áreas protegidas, como la edad, el tipo y la efectividad de la gestión. Dentro de las características de las áreas protegidas, las variables que reflejan una gestión colaborativa y equitativa y el tamaño del área protegida fueron los predictores más potentes de la pérdida de bosques, aunque con menor poder explicativo que las variables socioeconómicas y biofísicas. A diferencia de los métodos utilizados anteriormente, que suelen basarse en el supuesto de relaciones lineales, observamos que las asociaciones entre la mayoría de los predictores y la pérdida de bosques no son lineales. Nuestros resultados pueden servir de base para la toma de decisiones sobre la asignación de los recursos para las áreas protegidas, reforzando la gestión en las zonas protegidas con mayor riesgo de deforestación y ayudando a proteger de forma preventiva zonas clave para la biodiversidad que pueden ser vulnerables a la deforestación en el futuro.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Conservação dos Recursos Naturais/métodos , México , Densidade Demográfica , Fatores Socioeconômicos
2.
Conserv Biol ; : e14195, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811727

RESUMO

Indigenous Peoples' lands (IPL) cover at least 38 million km2 (28.1%) of Earth's terrestrial surface. These lands can be important for biodiversity conservation. Around 20.7% of IPL intersect areas protected by government (PAs). Many sites of importance for biodiversity within IPL could make a substantial but hitherto unquantified contribution to global site-based conservation targets. Key Biodiversity Areas (KBAs) represent the largest global network of systematically identified sites of high importance for biodiversity. We assessed the effectiveness of IPL in slowing biodiversity loss inside and outside PAs by quantifying tree cover loss from 2000 to 2019 in KBAs at international and national levels and comparing it with losses at equivalent sites outside mapped IPL. Based on a matched sample of 1-km2 cells in KBAs inside and outside mapped IPL, tree cover loss in KBAs outside PAs was lower inside IPL than outside IPL. By contrast, tree cover loss in KBAs inside PAs was lower outside IPL than inside IPL (although the difference was far smaller). National rates of tree cover loss in KBAs varied greatly in relation to their IPL and PA status. In one half of the 44 countries we examined individually, there was no significant difference in the rate of tree cover loss in KBAs inside and outside mapped IPL. The reasons for this intercountry variation could illuminate the importance of IPL in meeting the Convention on Biological Diversity's ambition of conserving 30% of land by 2030. Critical to this will be coordinated action by governments to strengthen and enforce Indigenous Peoples' rights, secure their collective systems of tenure and governance, and recognize their aspirations for their lands and futures.


Tasas de pérdida de la cobertura arbórea en áreas clave de biodiversidad en suelo indígena Resumen Las tierras de los pueblos indígenas (TPI) cubren al menos 38 millones de km2 (28.1%) de la superficie del planeta. Estas tierras pueden ser importantes para la conservación de la biodiversidad. Un 20.7% de las TPI se intersecan con áreas protegidas (AP) por el gobierno. Muchos sitos con importancia para la biodiversidad dentro de las TPI podrían contribuir de forma sustancial, pero todavía sin cuantificar, a los objetivos globales de conservación in situ. Las áreas clave para la biodiversidad (ACB) representan la mayor red mundial de sitios con identificación sistemática de gran valor para la biodiversidad. Evaluamos la efectividad de las TPI en la reducción de la pérdida de la biodiversidad dentro y fuera de las AP mediante la cuantificación de la pérdida de la cobertura arbórea entre el 2000 y 2019 en las ACB a niveles nacional e internacional. También comparamos esta efectividad con las pérdidas en sitios equivalentes fuera de las TPI mapeadas. Con base en una muestra emparejada de celdas de 1-km2 en ACB dentro y fuera de las TPI mapeadas, la pérdida de la cobertura arbórea en las ACB ubicadas fuera de las AP fue menor dentro de las TPI que fuera de ellas. Al contrario, la pérdida en las ACB ubicadas dentro de las AP fue menor afuera de las TPI que adentro de ellas (aunque la diferencia fue por mucho menor). Las tasas nacionales de pérdida de la cobertura arbórea en las ACB variaron sobremanera en relación con su estado en las TPI y en las AP. En la mitad de los 44 países que analizamos individualmente no hubo una diferencia significativa en la tasa de pérdida de la cobertura arbórea en las ACB dentro y fuera de las TPI mapeadas. Las razones detrás de esta variación entre los países podrían aclarar la importancia que tienen las TPI para cumplir con la meta del Convenio sobre Diversidad Biológica de conservar el 30% del suelo para el 2030. La acción coordenada de los gobiernos será crítica para fortalecer y hacer cumplir los derechos de los pueblos indígenas, asegurar su sistema colectivo de tenencia y gobierno, y reconocer sus objetivos para sus tierras y el futuro.

3.
Conserv Biol ; 36(6): e13924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35443092

RESUMO

Development and implementation of effective protected area management to reduce deforestation depend in part on identifying factors contributing to forest loss and areas at risk of conversion, but standard land-use-change modeling may not fully capture contextual factors that are not easily quantified. To better understand deforestation and agricultural expansion in Amazonian protected areas, we combined quantitative land-use-change modeling with qualitative discourse analysis in a case study of Brazil's Jamanxim National Forest. We modeled land-use change from 2008 to 2018 and projected deforestation through 2028. We used variables identified in a review of studies that modeled land-use change in the Amazon (e.g., variables related to agricultural suitability and economic accessibility) and from a critical discourse analysis that examined documents produced by different actors (e.g., government agencies and conservation nonprofit organizations) at various spatial scales. As measured by analysis of variance, McFadden's adjusted pseudo R2 , and quantity and allocation disagreement, we found that including variables in the model identified as important to deforestation dynamics through the qualitative discourse analysis (e.g., the proportion of unallocated public land, distance to proposed infrastructure developments, and density of recent fires) alongside more traditional variables (e.g., elevation, distance to roads, and protection status) improved the predictive ability of these models. Models that included discourse analysis variables and traditional variables explained up to 19.3% more of the observed variation in deforestation probability than a model that included only traditional variables and 4.1% more variation than a model with only discourse analysis variables. Our approach of integrating qualitative and quantitative methods in land-use-change modeling provides a framework for future interdisciplinary work in land-use change.


El desarrollo y la implementación de la gestión efectiva de las áreas protegidas para reducir la deforestación dependen parcialmente de la identificación de los factores que contribuyen a la pérdida del bosque y de las áreas en riesgo de ser convertidas, pero el modelado estándar del cambio de uso de suelo puede no capturar completamente los factores contextuales que no se cuantifican fácilmente. Combinamos el modelado cuantitativo del cambio de uso de suelo con el análisis cualitativo del discurso en un estudio de caso del Bosque Nacional Jamanxim de Brasil para entender de mejor manera la deforestación y la expansión agrícola en las áreas protegidas del Amazonas. Modelamos el cambio de uso de suelo entre 2008 y 2018 y lo proyectamos hasta 2028. Usamos las variables identificadas en una revisión de estudios que modelaron el cambio de uso de suelo en el Amazonas (p. ej.: variables relacionadas con la idoneidad agrícola y la accesibilidad económica) y en el análisis crítico del discurso que examinó documentos producidos por diferentes actores (p. ej.: agencias gubernamentales y organizaciones sin fines de lucro para la conservación) a varias escalas espaciales. Conforme a las medidas del análisis de varianza, la pseudo-R2 ajustada de McFadden y el desacuerdo en la cantidad y la asignación, descubrimos que la inclusión dentro del modelo de las variables identificadas como importantes para las dinámicas de deforestación mediante el análisis cualitativo del discurso (p. ej.: la proporción de terrenos públicos sin asignar, la distancia hacia los desarrollos propuestos de infraestructura y la densidad de incendios recientes) junto con variables más tradicionales (p. ej.: elevación, distancia a las carreteras y estado de protección) mejoró la habilidad predictiva de dichos modelos. Los modelos que incluyeron la mezcla de variables explicaron hasta 19.3% más de la variación observada en la probabilidad de deforestación que un modelo que solamente incluyó las variables tradicionales y 4.1% más variación que un modelo con las variables del análisis del discurso. Nuestra estrategia de integrar los métodos cualitativos y cuantitativos dentro del modelado del cambio de uso de suelo proporciona un marco para futuros trabajos interdisciplinarios sobre el cambio de uso de suelo.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Florestas , Agricultura , Brasil
4.
Conserv Biol ; 35(1): 77-87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854480

RESUMO

Understanding how the world's flora and fauna will respond to bioenergy expansion is critical. This issue is particularly pronounced considering bioenergy's potential role as a driver of land-use change, the variety of production crops being considered and currently used for biomass, and the diversity of ecosystems that can potentially supply land for bioenergy across the planet. We conducted 2 global meta-analyses to determine how 8 of the most commonly used bioenergy crops may affect site-level biodiversity. One search was directed at finding data on biodiversity in different production land uses and the other at extracting energy-yield estimates of potential bioenergy crops. We used linear mixed-effect models to test whether effects on biodiversity varied with different individual bioenergy crop species, estimated energy yield, first- or second-generation crops, type of reference ecosystem considered, and magnitude of vertical change in habitat structure between any given crop and the reference ecosystem. Species diversity and abundance were generally lower in crops considered for bioenergy relative to the natural ecosystems they may replace. First-generation crops, derived from oils, sugars, and starches, tended to have greater effects than second-generation crops, derived from lignocellulose, woody crops, or residues. Crop yield had nonlinear effects on abundance and, to a lesser extent, overall biodiversity; biodiversity effects were driven by negative yield effects for birds but not other taxa. Our results emphasize that replacing natural ecosystems with bioenergy crops across the planet will largely be detrimental for biodiversity, with first generation and high-yield crops having the strongest negative effects. We argue that meeting energy goals with bioenergy using existing marginal lands or biomass extraction within existing production landscapes may provide more biodiversity-friendly alternatives than conversion of natural ecosystems for biofuel production.


RESUMEN: Es de suma importancia entender cómo responderán la flora y la fauna mundial ante la expansión de la bioenergía. Este tema es acentuado particularmente si consideramos el papel potencial que tiene la bioenergía como causante del cambio en el uso de suelo, la variedad de producción de cultivos que se está considerando y que se usa actualmente para la biomasa y la diversidad de ecosistemas que potencialmente pueden proporcionar tierras para la bioenergía en todo el planeta. Realizamos dos meta-análisis mundiales para determinar cómo ocho de los cultivos que se usan con mayor frecuencia para la bioenergía podrían afectar a la biodiversidad a nivel de sitio. Una búsqueda estuvo dirigida al hallazgo de datos sobre la biodiversidad en diferentes usos de suelo para producción y la otra hacia la extracción de estimaciones de producción de energía de los cultivos potenciales para la bioenergía. Usamos modelos de efectos lineales mixtos para probar si los efectos sobre la biodiversidad variaron con diferentes especies individuales de cultivos para bioenergía, la producción de energía estimada, los cultivos de primera o segunda generación, el tipo de ecosistema de referencia considerado y la magnitud del cambio vertical en la estructura del hábitat entre cualquier cultivo dado y el ecosistema de referencia. La diversidad y la abundancia de especies fueron generalmente más bajas para los cultivos considerados para la bioenergía en relación con el ecosistema natural que podrían reemplazar. Los cultivos de primera generación, derivados de aceites, azúcares y almidones, tendieron a tener efectos más grandes que los cultivos de segunda generación, derivados de la lignocelulosa, cultivos leñosos o residuos. La producción de cultivos tuvo efectos no lineales sobre la abundancia y, a una menor extensión, sobre la biodiversidad en general; los efectos de la biodiversidad fueron causados por los efectos negativos de producción para las aves pero no para otros taxones. Nuestros resultados enfatizan que el reemplazo de ecosistemas naturales por cultivos para la bioenergía en todo el planeta será considerablemente perjudicial para la biodiversidad, con los efectos negativos más fuertes ocasionados por los cultivos de primera generación o de alta producción. Argumentamos que lograr los objetivos de energía por medio de bioenergía usando las tierras marginales existentes o la extracción de biomasa dentro de paisajes existentes de producción puede proporcionar alternativas más amigables para la biodiversidad que la conversión de los ecosistemas naturales para la producción de biocombustibles.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Animais , Biodiversidade , Biomassa , Produtos Agrícolas
5.
Conserv Biol ; 34(5): 1271-1280, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919881

RESUMO

Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species' range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species' distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.


Efectos Combinados del Uso de Suelo y la Caza en la Distribución de los Mamíferos Tropicales Resumen El uso de suelo y la caza son dos de las principales presiones ejercidas sobre la biodiversidad de los trópicos. Aun así, los impactos combinados que generan no han sido cuantificados sistemáticamente a gran escala. Estimamos los efectos de ambas presiones sobre la distribución de 1,884 especies de mamíferos tropicales al integrar mapas de distribución de las especies, mapas detallados del uso de suelo (de 1992 y 2015), datos de preferencia de hábitat específicos por especie y un modelo de presión de caza. Identificamos además las áreas en donde los impactos combinados eran mayores (puntos calientes) y menores (puntos fríos) para determinar las áreas prioritarias para la mitigación o prevención de dichas presiones. El uso de suelo fue el principal conductor de la reducción de la distribución para todas las especies de mamíferos que consideramos. Sin embargo, la presión por caza causó reducciones adicionales en la distribución de especies de gran tamaño. Juntas, el uso de suelo y la caza redujeron la distribución de las especies en un 41% (DS 30) en promedio (año 2015). El solapamiento entre los impactos fue, en promedio, sólo del 2%. El uso de suelo contribuyó más a la pérdida de la distribución (39%, en promedio) que la caza (4%, en promedio). A pesar de esto, en promedio la caza redujo la distribución de los mamíferos de gran tamaño en un 29%; por lo tanto, los grandes mamíferos perdieron una cantidad desproporcionada de área debido a la combinación de ambas presiones. El Gran Chaco, el Bosque Atlántico y Tailandia tuvieron niveles altos de impacto en todas las especies (puntos calientes de pérdida de área). Como contraste, las cuencas del Amazonas y el Congo, las Guayanas y Borneo tuvieron niveles relativamente bajos de impacto (puntos fríos de pérdida de área). En general, las presiones por caza y uso de suelo incrementaron desde 1992 a 2015 y las correspondientes pérdidas de distribución incrementaron de un 38% a un 41% en promedio para todas las especies. Para proteger de forma efectiva a los mamíferos tropicales, las políticas de conservación deberían considerar a ambas presiones de manera simultánea, pues sus efectos son altamente complementarios. Nuestros resultados espacialmente detallados y específicos para cada especie pueden respaldar las futuras agendas de conservación nacionales e internacionales, incluyendo el diseño de las estrategias y los objetivos de las áreas protegidas para después de 2020.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Biodiversidade , Bornéu , Congo , Ecossistema , Humanos , Tailândia
6.
Conserv Biol ; 34(2): 405-415, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31773785

RESUMO

Terrestrial animals are negatively affected by habitat loss, which is assessed on a landscape scale, whereas secondary effects of habitat loss, such as crowding, are usually disregarded. Such impacts are inherently hard to address and poorly understood, and there is a growing concern that they could have dire consequences. We sampled birds throughout a deforestation process to assess crowding stress in an adjacent habitat remnant in the southern Brazilian Atlantic Forest. Crowding is expected of highly mobile taxa, especially given the microhabitat heterogeneity of Neotropical forests, and we hypothesized that the arrival of new individuals or species in refuges shifts assemblage patterns. We used point counts to obtain bird abundances in a before-after-control-impact design sampling of a deforestation event. Temporal changes in taxonomic and functional diversity were examined with metrics used to assess alpha and beta diversity, turnover of taxonomic and functional similarity, and taxonomic and functional composition. Over time increased abundance of some species altered the Simpson index and affected the abundance-distribution of traits in the habitat remnant. Taxonomic composition and functional composition changed in the remnant, and thus bird assemblages changed over time. Taxonomic and functional metrics indicated that fugitives affected resident assemblages in refuges, and effects endured >2 years after the deforestation processes had ceased. Dissimilarity of taxonomic composition between pre- and postdeforestation assemblages increased, whereas functional composition reverted to preimpact conditions. We found that ecological disruptions resulted from crowding and escalated into disruptions of species' assemblages and potentially compromising ecosystem functioning. It is important to consider crowding effects of highly mobile taxa during impact assessments, especially in large-scale infrastructure projects that may affect larger areas than is assumed.


Efectos del Amontonamiento debido a la Pérdida del Hábitat sobre los Patrones de Ensamblaje de las Especies Resumen Los animales terrestres se ven afectados negativamente por la pérdida del hábitat, la cual es evaluada con una escala de paisaje, mientras que los efectos secundarios de la pérdida del hábitat, como el amontonamiento, suelen ser ignorados. Dichos impactos son inherentemente difíciles de tratar y su entendimiento es muy pobre, además de que existe una preocupación creciente por las posibles consecuencias graves que podrían tener. Muestreamos aves durante un proceso de deforestación para evaluar el estrés por amontonamiento en un hábitat remanente contiguo a la parte sur del Bosque Atlántico Brasileño. Se espera que el amontonamiento ocurra en taxones con mucha movilidad, especialmente en el caso de los heterogéneos bosques Neotropicales, por lo que nuestra hipótesis consistió en suponer que la llegada a los refugios de nuevos individuos o especies modifica los patrones de ensamblado. Usamos el conteo por puntos para obtener la abundancia de las aves en un diseño de muestreo de antes-después-control-impacto de un evento de deforestación. Examinamos los cambios temporales en la diversidad taxonómica y funcional con medidas usadas para evaluar la diversidad alfa y beta, la rotación de la similitud taxonómica y funcional y la composición taxonómica y funcional. Con el tiempo, el incremento en la abundancia de algunas especies alteró el índice Simpson y afectó la abundancia y distribución de los caracteres en el hábitat remanente. La composición taxonómica y la composición funcional cambiaron en el hábitat remanente, por lo que los ensamblajes de aves cambiaron con el tiempo. Las medidas taxonómicas y funcionales indicaron que los individuos fugitivos afectaron a los ensamblajes de residentes en los refugios y sus efectos perduraron más de dos años después de que el proceso de deforestación había culminado. La disparidad de la composición taxonómica entre los ensamblajes antes y después de la deforestación incrementó, mientras que la composición funcional se revirtió a las condiciones previas al impacto. Encontramos que las perturbaciones ecológicas resultaron en el amontonamiento de especies y después escalaron hasta llegar a ser perturbaciones en el ensamblaje de las especies y potencial empobrecimiento del funcionamiento del ecosistema. Es importante considerar los efectos del amontonamiento de los taxones con mucha movilidad durante las evaluaciones de impacto ambiental, especialmente para proyectos con infraestructuras a gran escala que podrían afectar a un área mayor a la supuesta inicialmente.


Assuntos
Biodiversidade , Ecossistema , Animais , Brasil , Conservação dos Recursos Naturais , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA