Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477641

RESUMO

Clarifying the mechanisms underlying shape alterations during insect metamorphosis is important for understanding exoskeletal morphogenesis. The large horn of the Japanese rhinoceros beetle Trypoxylus dichotomus is the result of drastic metamorphosis, wherein it appears as a rounded shape during pupation and then undergoes remodeling into an angular adult shape. However, the mechanical mechanisms underlying this remodeling process remain unknown. In this study, we investigated the remodeling mechanisms of the Japanese rhinoceros beetle horn by developing a physical simulation. We identified three factors contributing to remodeling by biological experiments - ventral adhesion, uneven shrinkage, and volume reduction - which were demonstrated to be crucial for transformation using a physical simulation. Furthermore, we corroborated our findings by applying the simulation to the mandibular remodeling of stag beetles. These results indicated that physical simulation applies to pupal remodeling in other beetles, and the morphogenic mechanism could explain various exoskeletal shapes.


Assuntos
Besouros , Animais , Japão , Simulação por Computador , Mandíbula , Pupa
2.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990942

RESUMO

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Assuntos
Besouros , Lipogênese , Estações do Ano , Animais , Lipogênese/fisiologia , Besouros/metabolismo , Besouros/genética , Besouros/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Diapausa de Inseto , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
3.
Proc Natl Acad Sci U S A ; 121(26): e2322927121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885386

RESUMO

RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.


Assuntos
Besouros , Citosol , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , RNA de Cadeia Dupla , Proteínas de Ligação a RNA , Animais , Retículo Endoplasmático/metabolismo , RNA de Cadeia Dupla/metabolismo , Citosol/metabolismo , Besouros/metabolismo , Besouros/genética , Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Interferência de RNA , Transporte Biológico
4.
Proc Natl Acad Sci U S A ; 121(33): e2410889121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110737

RESUMO

Insects and their gut bacteria form a tight and beneficial relationship, especially in utilization of host nutrients. The red turpentine beetle (RTB), a destructive and invasive pine pest, employs mutualistic microbes to facilitate its invasion success. However, the molecular mechanism underlying the utilization of nutrients remains unknown. In this study, we found that gut bacteria are crucial for the utilization of D-glucose, a main carbon source for RTB development. Downstream assays revealed that gut bacteria-induced gut hypoxia and the secretion of riboflavin are responsible for RTB development by regulating D-glucose transport via the activation of a hypoxia-induced transcription factor 1 (Hif-1α). Further functional investigations confirmed that Hif-1α mediates glucose transport by direct upregulation of two glucose transporters (ST10 and ST27), thereby promoting RTB development. Our findings reveal how gut bacteria regulate the development of RTB, and promote our understanding of the mutualistic relationship of animals and their gut bacteria.


Assuntos
Besouros , Microbioma Gastrointestinal , Glucose , Animais , Glucose/metabolismo , Besouros/microbiologia , Besouros/metabolismo , Microbioma Gastrointestinal/fisiologia , Simbiose/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transporte Biológico , Pinus/parasitologia , Pinus/microbiologia , Pinus/metabolismo , Espécies Introduzidas , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Bactérias/metabolismo , Bactérias/genética
5.
Mol Plant Microbe Interact ; 37(5): 445-458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240660

RESUMO

Mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a devastating forest insect pest that has killed millions of hectares of pines in western North America over the past two decades. Like other bark beetles, MPB vectors ophiostomatoid fungal species, some of which are pathogenic to host pine species. The phytopathogenicity of these fungal symbionts has sparked considerable debate regarding their role in facilitating MPB attack success. We tested the hypothesis that MPB ophiostomatoid fungal associates like Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield contribute to overwhelming host defenses during MPB mass attack. We compared responses of mature lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees growing in natural stands that were mass attacked by MPB with those inoculated with G. clavigera by examining host defense hormones, secondary metabolites, and gene expression profiles. The jasmonate and ethylene signatures of necrotrophic pathogen-triggered response were identified in G. clavigera-inoculated trees, but only the jasmonate signature of a herbivore-triggered response was measured in MPB-attacked trees. Several G. clavigera-induced changes in pine phenolic metabolite profiles and phenolic biosynthesis gene expression patterns were absent in MPB-attacked pines. These findings indicate that ophiostomatoid fungi like G. clavigera are not a major factor in overwhelming host defenses during MPB mass attack. Instead, fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree. Phenolics appear to play a larger role in the host response to G. clavigera than to MPB, although phenolics may also influence MPB feeding and behavior. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Besouros , Ophiostomatales , Pinus , Simbiose , Pinus/parasitologia , Pinus/microbiologia , Animais , Ophiostomatales/fisiologia , Besouros/microbiologia , Besouros/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo Secundário , Regulação da Expressão Gênica de Plantas
6.
BMC Genomics ; 25(1): 275, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475721

RESUMO

BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.


Assuntos
Besouros , Espécies Introduzidas , Animais , Besouros/genética , Genômica , Canadá , Itália , Filogenia
7.
BMC Plant Biol ; 24(1): 609, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926877

RESUMO

BACKGROUND: Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS: 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS: Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.


Assuntos
Besouros , Herbivoria , Tricomas , Vitis , Animais , Vitis/genética , Vitis/fisiologia , Vitis/parasitologia , Tricomas/fisiologia , Tricomas/genética , Besouros/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Defesa das Plantas contra Herbivoria
8.
Small ; : e2311588, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497502

RESUMO

The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.

9.
Glob Chang Biol ; 30(3): e17242, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497382

RESUMO

Global change impacts on disturbances can strongly compromise the capacity of forests to provide ecosystem services to society. In addition, many ecosystem services in Europe are simultaneously provided by forests, emphasizing the importance of multifunctionality in forest ecosystem assessments. To address disturbances in forest ecosystem policies and management, spatially explicit risk analyses that consider multiple disturbances and ecosystem services are needed. However, we do not yet know which ecosystem services are most at risk from disturbances in Europe, where the respective risk hotspots are, nor which of the main disturbance agents are most detrimental to the provisioning of multiple ecosystem services from Europe's forests. Here, we quantify the risk of losing important ecosystem services (timber supply, carbon storage, soil erosion control and outdoor recreation) to forest disturbances (windthrows, bark beetle outbreaks and wildfires) in Europe on a continental scale. We find that up to 12% of Europe's ecosystem service supply is at risk from current disturbances. Soil erosion control is the ecosystem service at the highest risk, and windthrow is the disturbance agent posing the highest risk. Disturbances challenge forest multifunctionality by threatening multiple ecosystem services simultaneously on 19.8 Mha (9.7%) of Europe's forests. Our results highlight priority areas for risk management aiming to safeguard the sustainable provisioning of forest ecosystem services.


Assuntos
Ecossistema , Incêndios Florestais , Florestas , Europa (Continente) , Carbono
10.
J Evol Biol ; 37(7): 748-757, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38654518

RESUMO

Dispersal is an important facet of the life history of many organisms and is, therefore, subject to selective pressure but does not evolve in isolation. Across nature, there are examples of dispersal syndromes and life history strategies in which suites of traits coevolve and covary with dispersal in combinations that serve to maximize fitness in a given ecological context. The red rust flour beetle, Tribolium castaneum, is a model organism and globally significant post-harvest pest that relies on dispersal to reach new patches of ephemeral habitat. Dispersal behaviour in Tribolium has a strong genetic basis. However, a robust understanding of the relationship between dispersal and other life-history components, which could elucidate evolutionary processes and allow pest managers to control their spread and reduce the impact of infestation, is currently lacking. Here, we use highly replicated lines of T. castaneum previously artificially selected for divergent small-scale dispersal propensity to robustly test several important life history components: reproductive strategy, development time, and longevity. As predicted, we find that a suite of important changes as a result of our selection on dispersal: high dispersal propensity is associated with a lower number of longer mating attempts by males, lower investment in early life reproduction by females, slower development of later-laid offspring, and longer female life span. These findings indicate that correlated intraspecific variation in dispersal and related traits may represent alternative life history strategies in T. castaneum. We therefore suggest that pest management efforts to mitigate the species' agro-economic impact should consider the eco-evolutionary dynamics within multiple life histories. The benefits of doing so could be felt both through improved targeting of efforts to reduce spread and also in forecasting how the selection pressures applied through pest management are likely to affect pest evolution.


Assuntos
Distribuição Animal , Tribolium , Animais , Tribolium/genética , Tribolium/fisiologia , Masculino , Feminino , Seleção Genética , Características de História de Vida , Longevidade , Reprodução , Evolução Biológica
11.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897399

RESUMO

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Assuntos
Tribolium , Inibidores da Tripsina , Animais , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tribolium/enzimologia , Tribolium/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/antagonistas & inibidores , Sementes/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química
12.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38680096

RESUMO

The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.


Assuntos
Besouros , Drosophila melanogaster , Metabolismo Energético , Animais , Abelhas/enzimologia , Abelhas/metabolismo , Abelhas/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Besouros/enzimologia , Besouros/metabolismo , Besouros/fisiologia , Temperatura Alta
13.
J Exp Biol ; 227(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284763

RESUMO

Many insects utilise the polarisation pattern of the sky to adjust their travelling directions. The extraction of directional information from this sky-wide cue is mediated by specialised photoreceptors located in the dorsal rim area (DRA). While this part of the eye is known to be sensitive to the ultraviolet, blue or green component of skylight, the latter has only been observed in insects active in dim light. To address the functional significance of green polarisation sensitivity, we define the spectral and morphological adaptations of the DRA in a nocturnal ball-rolling dung beetle-the only family of insects demonstrated to orient to the dim polarisation pattern in the night sky. Intracellular recordings revealed polarisation-sensitive green photoreceptors in the DRA of Escarabaeus satyrus. Behavioural experiments verified the navigational relevance of this finding. To quantify the adaptive value of green sensitivity for celestial orientation at night, we also obtained the polarisation properties of the night sky in the natural habitat of the beetle. Calculations of relative photon catch revealed that under a moonlit sky the green-sensitive DRA photoreceptors can be expected to catch an order of magnitude more photons compared with the UV-sensitive photoreceptors in the main retina. The green-sensitive photoreceptors - which also show a range of morphological adaptations for enhanced sensitivity - provide E. satyrus with a highly sensitive system for the extraction of directional information from the night sky.


Assuntos
Besouros , Luz , Animais , Besouros/fisiologia , Visão Ocular , Células Fotorreceptoras , Retina/fisiologia
14.
J Chem Ecol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088150

RESUMO

The recognition of cerambycids as frequent and damaging invaders led to an increase in the interest in the chemical ecology of the group with the identification of pheromones and pheromone-like attractants for well over 100 species. Pheromone components of the Cerambycidae are often phylogenetically conserved, with a single compound serving as a pheromone component for several related species. In the subfamily Lamiinae, the compound 2-(undecyloxy)ethanol (monochamol) has been identified as an aggregation-sex pheromone for several species of the genus Monochamus. In other species, including Monochamus maculosus Haldeman, field trials have demonstrated that monochamol is a pheromone attractant, but at that point it was still unknown as to whether it was a pheromone for this species. Here we report the identification, and laboratory and field trials of a pheromone component produced by adult male M. maculosus. Chemical analyses of headspace volatile collections sampled from field collected beetles of both sexes revealed the presence of one male-specific compound that was identified as 2-(undecyloxy)ethanol. Electroantennography analyses showed that monochamol elicited responses from the antennae of female beetles. Traps baited with monochamol in the field captured M. maculosus adults of both sexes corroborating the identification of monochamol as the sex-aggregation pheromone of this species. The attractivity of monochamol to adult M. maculosus in our field trapping experiment was synergized by the addition of the host volatile α-pinene.

15.
J Chem Ecol ; 50(3-4): 122-128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388901

RESUMO

The scarab genus Osmoderma (Coleoptera: Scarabaeidae) includes several large species called hermit beetles that develop within dead and decaying hardwood trees. Males of at least three Palearctic species produce the aggregation-sex pheromone (R)-(+)-γ-decalactone, including the endangered O. eremita (Scopoli). However, hermit beetles have received less attention in the western hemisphere, resulting in a large gap in our knowledge of the chemical ecology of Nearctic species. Here, we identify (R)-( +)-γ-decalactone as the primary component of the aggregation-sex pheromone of the North American species Osmoderma eremicola (Knoch). Field trials at sites in Wisconsin and Illinois revealed that both sexes were attracted to lures containing (R)-(+)-γ-decalactone or the racemate, but only males of O. eremicola produced the pheromone in laboratory bioassays, alongside an occasional trace of the chain-length analog γ-dodecalactone. Females of the congener O. scabra (Palisot de Beauvois) were also significantly attracted by γ-decalactone, suggesting further conservation of the pheromone, as were females of the click beetle Elater abruptus Say (Coleoptera: Elateridae), suggesting that this compound may have widespread kairomonal activity. Further research is needed to explore the behavioral roles of both lactones in mediating behavioral and ecological interactions among these beetle species.


Assuntos
Besouros , Lactonas , Atrativos Sexuais , Animais , Besouros/fisiologia , Masculino , Feminino , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Atrativos Sexuais/metabolismo , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Feromônios/metabolismo , Feromônios/química , Feromônios/farmacologia
16.
J Chem Ecol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739335

RESUMO

The longhorn beetle Graphisurus fasciatus (Degeer) ranges from southeastern Canada to Florida and west to Texas, and has frequently been caught during field trials testing attraction of other cerambycid species to their synthesized pheromones. Collections of headspace volatiles from live beetles revealed that males but not females produce a polyketide compound identified as (4R,6S,7E,9E)-4,6,8-trimethylundeca-7,9-dien-3-one ([4R,6S,7E,9E]-graphisurone). Field trials verified that beetles of both sexes were attracted to the synthesized compound, indicating that it is an aggregation-sex pheromone. This structure represents a new structural motif among cerambycid pheromones, and a new natural product. While this study was in progress, the same compound was isolated from males of the South American cerambycid Eutrypanus dorsalis (Germar), in the same subfamily (Lamiinae) and tribe (Acanthocinini) as G. fasciatus. Field trials in Brazil confirmed that (4R,6S,7E,9E)-graphisurone is also an aggregation-sex pheromone for E. dorsalis, and a possible pheromone for two additional sympatric lamiine species, Hylettus seniculus (Germar) (Acanthocinini) and Oreodera quinquetuberculata (Drapiez) (tribe Acrocinini). These results indicate that graphisurone may be shared among a number of related species, as has been found with many components of cerambycid pheromones.

17.
Network ; : 1-30, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163538

RESUMO

In cloud computing (CC), task scheduling allocates the task to best suitable resource for execution. This article proposes a model for task scheduling utilizing the multi-objective optimization and deep learning (DL) model. Initially, the multi-objective task scheduling is carried out by the incoming user utilizing the proposed hybrid fractional flamingo beetle optimization (FFBO) which is formed by integrating dung beetle optimization (DBO), flamingo search algorithm (FSA) and fractional calculus (FC). Here, the fitness function depends on reliability, cost, predicted energy, and makespan, the predicted energy is forecasted by a deep residual network (DRN). Thereafter, task scheduling is accomplished based on DL using the proposed deep feedforward neural network fused long short-term memory (DFNN-LSTM), which is the combination of DFNN and LSTM. Moreover, when scheduling the workflow, the task parameters and the virtual machine's (VM) live parameters are taken into consideration. Task parameters are earliest finish time (EFT), earliest start time (EST), task length, task priority, and actual task running time, whereas VM parameters include memory utilization, bandwidth utilization, capacity, and central processing unit (CPU). The proposed model DFNN-LSTM+FFBO has achieved superior makespan, energy, and resource utilization of 0.188, 0.950J, and 0.238, respectively.

18.
Network ; : 1-34, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743436

RESUMO

Image denoising is one of the significant approaches for extracting valuable information in the required images without any errors. During the process of image transmission in the wireless medium, a wide variety of noise is presented to affect the image quality. For efficient analysis, an effective denoising approach is needed to enhance the quality of the images. The main scope of this research paper is to correct errors and remove the effects of channel degradation. A corrupted image denoising approach is developed in wireless channels to eliminate the bugs. The required images are gathered from wireless channels at the receiver end. Initially, the collected images are decomposed into several regions using Adaptive Lifting Wavelet Transform (ALWT) and then the "Symmetric Convolution-based Residual Attention Network (SC-RAN)" is employed, where the residual images are obtained by separating the clean image from the noisy images. The parameters present are optimized using Hybrid Energy Golden Tortoise Beetle Optimizer (HEGTBO) to maximize efficiency. The image denoising is performed over the obtained residual images and noisy images to get the final denoised images. The numerical findings of the developed model attain 31.69% regarding PSNR metrics. Thus, the analysis of the developed model shows significant improvement.

19.
Zoolog Sci ; 41(4): 363-376, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093282

RESUMO

The Coleoptera Cerambycidae (longicorn beetles) use wood under different states (living healthy, freshly snapped, completely rot, etc.) in a species-specific manner for their larval diet. Larvae of some Cerambycidae groups have mycetomes, accessory organs associated with the midgut that harbor fungal symbiont cells. The symbionts are thought to improve nutrient conditions; however, this has yet to be shown experimentally. To deduce the evolutionary history of this symbiosis, we investigated the characteristics of the mycetomes in the larvae of longicorn beetles collected in Japan. Lepturinae, Necydalinae, and Spondylidinae are the only groups that possess mycetomes, and these three groups' mycetomes and corresponding fungal cells exhibit different characteristics between the groups. However, the phylogenetic relationship of symbiont yeasts does not coincide with that of the corresponding longicorn beetle species, suggesting they have not co-speciated. The imperfect vertical transmission of symbiont yeasts from female to offspring is a mechanism that could accommodate the host-symbiont phylogenetic incongruence. Some Lepturinae species secondarily lost mycetomes. The loss is associated with their diet choice, suggesting that different conditions between feeding habits could have allowed species to discard this organ. We found that symbiont fungi encapsulated in the mycetomes are dispensable for larval growth if sufficient nutrients are given, suggesting that the role of symbiotic fungi could be compensated by the food larvae take. Aegosoma sinicum is a longicorn beetle classified to the subfamily Prioninae, which does not possess mycetomes. However, this species contains a restricted selection of yeast species in the larval gut, suggesting that the symbiosis between longicorn beetles and yeasts emerged before acquiring the mycetomes.


Assuntos
Besouros , Larva , Filogenia , Simbiose , Animais , Besouros/microbiologia , Besouros/fisiologia , Larva/microbiologia , Larva/fisiologia , Feminino , Fungos/fisiologia , Fungos/classificação , Fungos/genética
20.
J Hered ; 115(3): 292-301, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364316

RESUMO

Biodiversity conservation is a top priority in the face of global environmental change, and the practical restoration of biodiversity has emerged as a key objective. Nevertheless, the question of how to effectively contribute to biodiversity restoration and identify suitable systems for such efforts continues to present major challenges. By using genome-wide SNP data, our study revealed that populations from different mountain ranges of the Formosan Long-Arm Scarab beetle, a flagship species that receives strict protection, exhibited a single genetic cluster with no subdivision. Additionally, our result implied an association between the demographic history and historical fluctuations in climate and environmental conditions. Furthermore, we showed that, despite a stable and moderately sized effective population over recent history, all the individuals we studied exhibited signs of genetic inbreeding. We argued that the current practice of protecting the species as one evolutionarily significant unit remains the best conservation plan and that recent habitat change may have led to the pattern of significant inbreeding. We closed by emphasizing the importance of conservation genetic studies in guiding policy decisions and highlighting the potential of genomic data for identifying ideal empirical systems for genetic rescue, or assisted gene flow studies.


Assuntos
Besouros , Conservação dos Recursos Naturais , Genética Populacional , Endogamia , Densidade Demográfica , Animais , Besouros/genética , Polimorfismo de Nucleotídeo Único , Ecossistema , Fluxo Gênico , Genômica/métodos , Variação Genética , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA