Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.548
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
2.
Cell ; 179(5): 1191-1206.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730857

RESUMO

This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.


Assuntos
Linfócitos B/imunologia , Imunoterapia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/imunologia , Mutação/genética , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Genoma , Humanos , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Neoplasias Mamárias Animais/terapia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
3.
Cell ; 172(1-2): 41-54.e19, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249361

RESUMO

Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of µ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients' quality of life, and relieve the economic and societal burden due to variable drug responsiveness. VIDEO ABSTRACT.


Assuntos
Farmacogenética/métodos , Variantes Farmacogenômicos , Receptores Acoplados a Proteínas G/genética , Software , Sítios de Ligação , Prescrições de Medicamentos/normas , Células HEK293 , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
4.
Cell ; 173(2): 386-399.e12, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625054

RESUMO

The role of enhancers, a key class of non-coding regulatory DNA elements, in cancer development has increasingly been appreciated. Here, we present the detection and characterization of a large number of expressed enhancers in a genome-wide analysis of 8928 tumor samples across 33 cancer types using TCGA RNA-seq data. Compared with matched normal tissues, global enhancer activation was observed in most cancers. Across cancer types, global enhancer activity was positively associated with aneuploidy, but not mutation load, suggesting a hypothesis centered on "chromatin-state" to explain their interplay. Integrating eQTL, mRNA co-expression, and Hi-C data analysis, we developed a computational method to infer causal enhancer-gene interactions, revealing enhancers of clinically actionable genes. Having identified an enhancer ∼140 kb downstream of PD-L1, a major immunotherapy target, we validated it experimentally. This study provides a systematic view of enhancer activity in diverse tumor contexts and suggests the clinical implications of enhancers.


Assuntos
Elementos Facilitadores Genéticos/genética , Neoplasias/patologia , Aneuploidia , Antígeno B7-H1/genética , Cromatina/genética , Cromatina/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/terapia , Análise de Sequência de RNA , Taxa de Sobrevida
5.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
6.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033130

RESUMO

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudo de Associação Genômica Ampla , Humanos , Melanoma/genética , Melanoma/imunologia , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T , Transcriptoma
7.
CA Cancer J Clin ; 74(3): 229-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572751

RESUMO

This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.


Assuntos
Saúde Global , Neoplasias , Humanos , Neoplasias/epidemiologia , Neoplasias/mortalidade , Masculino , Feminino , Incidência , Saúde Global/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Idoso , Criança , Adolescente , Pré-Escolar , Lactente , Adulto Jovem , Distribuição por Sexo , Recém-Nascido , Idoso de 80 Anos ou mais
8.
Immunity ; 52(1): 17-35, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940268

RESUMO

Cancer immunotherapy is a validated and critically important approach for treating patients with cancer. Given the vast research and clinical investigation efforts dedicated to advancing both endogenous and synthetic immunotherapy approaches, there is a need to focus on crucial questions and define roadblocks to the basic understanding and clinical progress. Here, we define ten key challenges facing cancer immunotherapy, which range from lack of confidence in translating pre-clinical findings to identifying optimal combinations of immune-based therapies for any given patient. Addressing these challenges will require the combined efforts of basic researchers and clinicians, and the focusing of resources to accelerate understanding of the complex interactions between cancer and the immune system and the development of improved treatment options for patients with cancer.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/imunologia
9.
CA Cancer J Clin ; 71(3): 209-249, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538338

RESUMO

This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.


Assuntos
Países Desenvolvidos/estatística & dados numéricos , Países em Desenvolvimento/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Neoplasias/epidemiologia , Dinâmica Populacional , África/epidemiologia , América/epidemiologia , Ásia/epidemiologia , Bases de Dados Factuais , Europa (Continente) , Feminino , Humanos , Incidência , Internacionalidade , Masculino , Neoplasias/mortalidade , Oceania/epidemiologia , Fatores de Risco , Distribuição por Sexo
10.
Am J Hum Genet ; 111(2): 242-258, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211585

RESUMO

Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.


Assuntos
Neoplasias , Humanos , Masculino , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Imunoterapia , Biomarcadores Tumorais/genética , Células Germinativas/patologia
11.
Proc Natl Acad Sci U S A ; 121(12): e2306771121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466846

RESUMO

Addressing the total energy cost burden of elderly people is essential for designing equitable and effective energy policies, especially in responding to energy crisis in an aging society. It is due to the double impact of energy price hikes on households-through direct impact on fuel bills and indirect impact on the prices of goods and services consumed. However, while examining the household energy cost burden of the elderly, their indirect energy consumption and associated cost burden remain poorly understood. This study quantifies and compares the direct and indirect energy footprints and associated total energy cost burdens for different age groups across 31 developed countries. It reveals that the elderly have larger per capita energy footprints, resulting from higher levels of both direct and indirect energy consumption compared with the younger age groups. More importantly, the elderly, especially the low-income elderly, have a higher total energy cost burden rate. As the share of elderly in the total population rapidly grows in these countries, the larger per capita energy footprint and associated cost burden rate of elderly people would make these aging countries more vulnerable in times of energy crises. It is therefore crucial to develop policies that aim to reduce energy consumption and costs, improve energy efficiency, and support low-income elderly populations. Such policies are necessary to reduce the vulnerability of these aging countries to the energy crisis.


Assuntos
Características da Família , Pobreza , Humanos , Idoso , Países Desenvolvidos , Envelhecimento , Política Pública
12.
Genes Dev ; 33(5-6): 310-332, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804224

RESUMO

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.


Assuntos
Apoptose , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Homeodomínio/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Mutação/genética , Fatores do Domínio POU/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Autoantígeno Ku/metabolismo , Fatores do Domínio POU/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico
13.
Immunol Rev ; 318(1): 157-166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470280

RESUMO

Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Biomarcadores , Imunoterapia/efeitos adversos , Biomarcadores Tumorais
14.
Hum Mol Genet ; 33(12): 1023-1035, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491801

RESUMO

Breast cancer (BRCA) is a highly heterogeneous disease, with significant differences in prognosis among patients. Existing biomarkers and prognostic models have limited ability to predict BRCA prognosis. Moonlighting genes regulate tumor progression and are associated with cancer prognosis. This study aimed to construct a moonlighting gene-based prognostic model for BRCA. We obtained differentially expressed genes (DEGs) in BRCA from The Cancer Genome Atlas and intersected them with moonlighting genes from MoonProt to acquire differential moonlighting genes. GO and KEGG results showed main enrichment of these genes in the response of BRCA cells to environmental stimuli and pentose phosphate pathway. Based on moonlighting genes, we conducted drug prediction and validated results through cellular experiments. After ABCB1 knockdown, viability and proliferation of BRCA cells were significantly enhanced. Based on differential moonlighting genes, BRCA was divided into three subgroups, among which cluster2 had the highest survival rate and immunophenoscore and relatively low tumor mutation burden. TP53 had the highest mutation frequency in cluster2 and cluster3, while PIK3CA had a higher mutation frequency in cluster1, with the majority being missense mutations. Subsequently, we established an 11-gene prognostic model in the training set based on DEGs among subgroups using univariate Cox regression, LASSO regression, and multivariable Cox regression analyses. Model prognostic performance was verified in GEO, METABRIC and ICGC validation sets. In summary, this study obtained three BRCA moonlighting gene-related subtypes and constructed an 11-gene prognostic model. The 11-gene BRCA prognostic model has good predictive performance, guiding BRCA prognosis for clinical doctors.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Mutação , Perfilação da Expressão Gênica/métodos , Proteína Supressora de Tumor p53/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38632951

RESUMO

In cancer genomics, variant calling has advanced, but traditional mean accuracy evaluations are inadequate for biomarkers like tumor mutation burden, which vary significantly across samples, affecting immunotherapy patient selection and threshold settings. In this study, we introduce TMBstable, an innovative method that dynamically selects optimal variant calling strategies for specific genomic regions using a meta-learning framework, distinguishing it from traditional callers with uniform sample-wide strategies. The process begins with segmenting the sample into windows and extracting meta-features for clustering, followed by using a pre-trained meta-model to select suitable algorithms for each cluster, thereby addressing strategy-sample mismatches, reducing performance fluctuations and ensuring consistent performance across various samples. We evaluated TMBstable using both simulated and real non-small cell lung cancer and nasopharyngeal carcinoma samples, comparing it with advanced callers. The assessment, focusing on stability measures, such as the variance and coefficient of variation in false positive rate, false negative rate, precision and recall, involved 300 simulated and 106 real tumor samples. Benchmark results showed TMBstable's superior stability with the lowest variance and coefficient of variation across performance metrics, highlighting its effectiveness in analyzing the counting-based biomarker. The TMBstable algorithm can be accessed at https://github.com/hello-json/TMBstable for academic usage only.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Genoma , Algoritmos
16.
CA Cancer J Clin ; 69(3): 166-183, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30786025

RESUMO

Between 1991 and 2015, the cancer mortality rate declined dramatically in the United States, reflecting improvements in cancer prevention, screening, treatment, and survivorship care. However, cancer outcomes in the United States vary substantially between populations defined by race/ethnicity, socioeconomic status, health insurance coverage, and geographic area of residence. Many potentially preventable cancer deaths occur in individuals who did not receive effective cancer prevention, screening, treatment, or survivorship care. At the same time, cancer care spending is large and growing, straining national, state, health insurance plans, and family budgets. Indeed, one of the most pressing issues in American medicine is how to ensure that all populations, in every community, derive the benefit from scientific research that has already been completed. Addressing these questions from the perspective of health care delivery is necessary to accelerate the decline in cancer mortality that began in the early 1990s. This article, part of the Cancer Control Blueprint series, describes challenges with the provision of care across the cancer control continuum in the United States. It also identifies goals for a high-performing health system that could reduce disparities and the burden of cancer by promoting the adoption of healthy lifestyles; access to a regular source of primary care; timely access to evidence-based care; patient-centeredness, including effective patient-provider communication; enhanced coordination and communication between providers, including primary care and specialty care providers; and affordability for patients, payers, and society.


Assuntos
Continuidade da Assistência ao Paciente/organização & administração , Objetivos , Equidade em Saúde/organização & administração , Acessibilidade aos Serviços de Saúde/organização & administração , Neoplasias/economia , Neoplasias/prevenção & controle , Continuidade da Assistência ao Paciente/economia , Equidade em Saúde/economia , Acessibilidade aos Serviços de Saúde/economia , Humanos , Seguro Saúde/economia , Seguro Saúde/organização & administração , Programas de Rastreamento/economia , Programas de Rastreamento/organização & administração , Neoplasias/epidemiologia , Estados Unidos/epidemiologia
17.
CA Cancer J Clin ; 69(2): 88-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548482

RESUMO

The prevalence of excess body weight and the associated cancer burden have been rising over the past several decades globally. Between 1975 and 2016, the prevalence of excess body weight in adults-defined as a body mass index (BMI) ≥ 25 kg/m2 -increased from nearly 21% in men and 24% in women to approximately 40% in both sexes. Notably, the prevalence of obesity (BMI ≥ 30 kg/m2 ) quadrupled in men, from 3% to 12%, and more than doubled in women, from 7% to 16%. This change, combined with population growth, resulted in a more than 6-fold increase in the number of obese adults, from 100 to 671 million. The largest absolute increase in obesity occurred among men and boys in high-income Western countries and among women and girls in Central Asia, the Middle East, and North Africa. The simultaneous rise in excess body weight in almost all countries is thought to be driven largely by changes in the global food system, which promotes energy-dense, nutrient-poor foods, alongside reduced opportunities for physical activity. In 2012, excess body weight accounted for approximately 3.9% of all cancers (544,300 cases) with proportion varying from less than 1% in low-income countries to 7% or 8% in some high-income Western countries and in Middle Eastern and Northern African countries. The attributable burden by sex was higher for women (368,500 cases) than for men (175,800 cases). Given the pandemic proportion of excess body weight in high-income countries and the increasing prevalence in low- and middle-income countries, the global cancer burden attributable to this condition is likely to increase in the future. There is emerging consensus on opportunities for obesity control through the multisectoral coordinated implementation of core policy actions to promote an environment conducive to a healthy diet and active living. The rapid increase in both the prevalence of excess body weight and the associated cancer burden highlights the need for a rejuvenated focus on identifying, implementing, and evaluating interventions to prevent and control excess body weight.


Assuntos
Saúde Global/estatística & dados numéricos , Neoplasias/etiologia , Sobrepeso/epidemiologia , Índice de Massa Corporal , Efeitos Psicossociais da Doença , Feminino , Humanos , Masculino , Neoplasias/epidemiologia , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/epidemiologia , Sobrepeso/complicações , Sobrepeso/diagnóstico , Prevalência , Fatores de Risco , Fatores Sexuais
18.
J Biol Chem ; : 107619, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098530

RESUMO

Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of AAD23, a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in GRK5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques (SPs) by 9 months. A six-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert (NBM) akin to wild-type mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the NBM. Notably, AAD23 treatment did not alter SPs and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in GRK5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.

19.
Am J Hum Genet ; 109(4): 647-668, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240056

RESUMO

The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
20.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397207

RESUMO

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Assuntos
Cardiomiopatia Hipertrófica , Cílios , Adulto , Animais , Cardiomiopatia Hipertrófica/metabolismo , Criança , Cílios/genética , Cílios/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim , Fígado , Mutação/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA