Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Biol Chem ; 299(2): 102842, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581205

RESUMO

The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas Proto-Oncogênicas p21(ras) , Survivina , Humanos , Linhagem Celular Tumoral , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Survivina/genética , Survivina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
2.
EMBO J ; 39(1): e102190, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31755573

RESUMO

TGF-ß signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-ß regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-ß in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-ß-activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56γ subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NFκB pathway, resulting in decreased expression levels of MMP-2, MMP-9, and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.


Assuntos
Autoantígenos/metabolismo , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Autoantígenos/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fragmentos de Peptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Smad4/genética , Proteína Smad4/metabolismo , Taxa de Sobrevida , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305233

RESUMO

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Assuntos
Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Transtorno Depressivo Maior/genética , Fosfatidilinositol 3-Quinases , Neurônios , Plasticidade Neuronal
4.
Mol Carcinog ; 62(4): 561-572, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36705466

RESUMO

Cancerous inhibitor of protein phosphatase 2A (Cip2a) is an oncoprotein, playing important roles in tumor progression. However, the underlying mechanisms by which Cip2a promotes tumor aggressiveness in NSCLC remain to be further investigated. In this study, we found that Cip2a expression is elevated in NSCLC and correlates with poor prognosis. Knockdown of Cip2a significantly reduced the ability of cell proliferation, invasion, and metastasis of NSCLC both in vitro and in vivo. Furthermore, we found that Cip2a promotes tumor progression partly by inducing arginine biosynthesis, and knockdown of Cip2a exhibited a significantly increased sensitivity to arginine deprivation and mTOR inhibition. In addition, we found that p53 mutants in NSCLC cells increased Cip2a expression by inhibiting the activity of wild-type p53. Our findings provide new insights into the mechanisms of Cip2a in promoting tumor progression and suggest that Cip2a represents a potential therapeutic target for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53 , Proliferação de Células/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/uso terapêutico , Linhagem Celular Tumoral
5.
J Recept Signal Transduct Res ; 43(6): 133-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38166612

RESUMO

Triple-negative breast cancer (TNBC) is associated with high-grade invasive carcinoma leading to a 10% to 15% death rate in younger premenopausal women. Targeting cancerous inhibitors of protein phosphatase (CIP2A) has been a highly effective approach for exploring therapeutic drug candidates. Lapatinib, a dual tyrosine kinase inhibitor, has shown promising inhibition properties by inducing apoptosis in TNBC carcinogenesis in vivo. Despite knowledge of the 3D structure of CIP2A, no reports provide insight into CIP2A ligand binding sites. To this effect, we conducted in silico site identification guided by lapatinib binding. Four of the five sites identified were cross-validated, and the stem domain revealed more excellent ligand binding affinity. The binding affinity of lapatinib in these sites was further computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach. According to MM/PBSA//200 ns MD simulations, lapatinib exhibited a higher binding affinity against CIP2A in site 2 with ΔG critical values of -37.1 kcal/mol. The steadiness and tightness of lapatinib with CIP2A inside the stem domain disclosed glutamic acid-318 as the culprit amino acid with the highest electrostatic energy. These results provide clear information on the CIP2A domain capable of ligand binding and validate lapatinib as a promising CIP2A inhibitor in TNBC carcinogenesis.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Lapatinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ligantes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição , Sítios de Ligação , Carcinogênese , Linhagem Celular Tumoral
6.
FASEB J ; 36(3): e22209, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195302

RESUMO

Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is upregulated and causes reactive astrogliosis, synaptic degeneration, and cognitive deficits in Alzheimer's disease (AD). However, the mechanism underlying the increased CIP2A expression in AD brains remains unclear. We here demonstrated that the DNA damage-related Checkpoint kinase 1 (ChK1) is activated in AD human brains and 3xTg-AD mice. ChK1-mediated CIP2A overexpression drives inhibition of PP2A and activates STAT3, then leads to reactive astrogliosis and neurodegeneration in vitro. Infection of mouse brain with GFAP-ChK1-AAV induced AD-like cognitive deficits and exacerbated AD pathologies in vivo. In conclusion, we showed that ChK1 activation induces reactive astrogliosis, degeneration of neurons, and exacerbation of AD through the CIP2A-PP2A-STAT3 pathway, and inhibiting ChK1 may be a potential therapeutic approach for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Autoantígenos/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Gliose/metabolismo , Proteínas de Membrana/metabolismo , Animais , Astrócitos/metabolismo , Autoantígenos/genética , Células Cultivadas , Quinase 1 do Ponto de Checagem/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
7.
Cancer Sci ; 113(12): 4135-4150, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114757

RESUMO

Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumor progression remain unclear. In this study, we found that the expression of the lncRNA TP53TG1 was downregulated in gastric cancer (GC) and it functioned as a tumor suppressor. In addition, low TP53TG1 expression was significantly associated with poor survival in patients with GC. TP53TG1 inhibited the proliferation, metastasis, and cell cycle progression of GC cells, while it promoted their apoptosis. m6A modification sites are highly abundant on TP53TG1, and demethylase ALKBH5 reduces TP53TG1 stability and downregulates its expression. TP53TG1 interacts with cancerous inhibitor of protein phosphatase 2A (CIP2A) and triggers its ubiquitination-mediated degradation, resulting in the inhibition of the PI3K/AKT pathway. These results suggest that TP53TG1 plays an important role in inhibiting the progression of GC and provides a crucial target for GC treatment.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
8.
Cell Tissue Res ; 389(1): 11-21, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35435493

RESUMO

Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555359

RESUMO

Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathology; interestingly, PP2A appears to be essential for controlling cell growth and may be involved in cancer development. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. To leverage the potential clinical utility of combination PP2A inhibition and radiotherapy treatment, it is vital that novel highly specific PP2A inhibitors be developed. In this review, the existing literature on the role of PP2A in brain tumors, especially in gliomas and glioblastoma (GBM), was analyzed. Interestingly, the review focused on the role of PP2A inhibitors, focusing on CIP2A inhibition, as CIP2A participated in tumor cell growth by stimulating cell-renewal survival, cellular proliferation, evasion of senescence and inhibition of apoptosis. This review suggested CIP2A inhibition as a promising strategy in oncology target therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteína Fosfatase 2 , Humanos , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Fosfatase 2/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5890-5899, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36472008

RESUMO

This study aims to investigate the effect of ethoxysanguinarine(Eth) on cisplatin(DDP)-resistant human gastric cancer cells and decipher the underlying mechanism. The human gastric cancer cell line SGC7901 and the DDP-resistant cell line SGC7901/DDP were used as the cell models. Western blot was employed to determine the expression levels of multidrug resistance-related proteins, and methyl thiazolyl tetrazolium(MTT) assay to detect the proliferation of SGC7901 and SGC7901/DDP cells exposed to DDP. After treatment with different concentrations of Eth, the proliferation of SGC7901 and SGC7901/DDP cells was detected by MTT assay, trypan blue exclusion assay, colony formation assay, and high-content imaging and analysis system. The apoptosis of SGC7901/DDP cells was detected by flow cytometry with Annexin V-FITC/PI staining. GFP-LC3 transfection was carried out to detect the effect of Eth on the autophagy of SGC7901/DDP cells. The expression levels of the multidrug resistance-related protein P-glycoprotein(P-gp), the apoptosis-related proteins [caspase-9, caspase-3, and poly(ADP-ribose) polymerase(PARP)], the autophagy-related protein light chain 3-Ⅱ(LC3-Ⅱ), the key effectors [mammalian target of rapamycin(mTOR), 70 kDa ribosomal protein S6 kinase(P70 S6 K), and 4 E binding protein 1(4 E-BP1)] of the mammalian target of rapamycin complex 1(mTORC1) signaling pathway, cancerous inhibitor of protein phosphatase 2A(CIP2A), and protein kinase B(Akt) were measured by Western blot. The mRNA level of CIP2A in the SGC7901/DDP cells exposed to Eth for 24 h was analyzed by RT-qPCR. After SGC7901/DDP cells were transfected with CIP2A expression vector pcDNA3.1-HA-CIP2A and treated with different concentrations of Eth, MTT assay was used to determine the prolife-ration of SGC7901/DDP cells and Western blot to detect the expression levels of related proteins. The interaction sites of Eth and CIP2A were predicted by molecular docking. The affinity between Eth and CIP2A was determined by drug affinity responsive target stability(DARTS) assay. The pharmacokinetic properties and drug-like activity of Eth were predicted by SwissADME. The results indicated that SGC7901/DDP cells were more sensitive to Eth than SGC7901 cells. Eth significantly inhibited proliferation and colony formation and changed the morphology, roundness, and area of SGC7901/DDP cells. Eth treatment caused the nucleus shrinking and significantly increased the apoptosis rate of the cells. Furthermore, Eth down-regulated the expression of caspase-9 and caspase-3 precursors and promoted the cleavage of PARP, which suggested that Eth induced the apoptosis of SGC7901/DDP cells. The GFP-LC3 in Eth-treated cells showed speckled aggregation. The up-regulated expression of LC3-Ⅱ by Eth indicated that Eth activated the autophagy of SGC7901/DDP cells. Eth down-regulated the expression of P-gp, the phosphorylation of mTOR, P70 S6K, and 4E-BP1, the expression of CIP2A, and the phosphorylation of Akt. Additionally, it increased the activity of PP2A, and had no significant effect on the expression of CIP2A in SGC7901/DDP cells. CIP2A overexpression antagonized the inhibition of cell proliferation and the activation of autophagy by Eth. Molecular docking suggested that Eth bound to CIP2A. The results of DARTS assay further proved the above binding effect. Eth has potential drug-like activity. The above results demonstrated that Eth inhibited the proliferation, induced the apoptosis, and activated the autophagy of SGC7901/DDP cells by targeting CIP2A and then down-regulating PP2A/mTORC1 signaling pathway. This study provided a new target for the treatment of cisplatin-resistant gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Caspase 9/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Autofagia , Apoptose , Proliferação de Células , Proteínas Reguladoras de Apoptose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Linhagem Celular Tumoral
11.
FASEB J ; 34(12): 16414-16431, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070372

RESUMO

Polyphyllin I (PPI) is a natural phytochemical drug isolated from plants which can inhibit the proliferation of cancer cells. One of the PPI tumor-inhibitory effects is through downregulating the expression of Cancerous Inhibitor of PP2A (CIP2A), the latter, is found upregulated in Alzheimer's disease (AD) brains and participates in the development of AD. In this study, we explored the application of PPI in experimental AD treatment in CIP2A-overexpressed cells and 3XTg-AD mice. In CIP2A-overexpressed HEK293 cells or primary neurons, PPI effectively reduced CIP2A level, activated PP2A, and decreased the phosphorylation of tau/APP and the level of Aß. Furthermore, synaptic protein levels were restored by PPI in primary neurons overexpressing CIP2A. Animal experiments in 3XTg-AD mice revealed that PPI treatment resulted in decreased CIP2A expression and PP2A re-activation. With the modification of CIP2A-PP2A signaling, the hyperphosphorylation of tau/APP and Aß overproduction were prevented, and the cognitive impairments of 3XTg-AD mice were rescued. In summary, PPI ameliorated AD-like pathology and cognitive impairment through modulating CIP2A-PP2A signaling pathway. It may be a potential drug candidate for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Autoantígenos/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Diosgenina/análogos & derivados , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Diosgenina/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
12.
Gynecol Oncol ; 162(1): 182-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33867147

RESUMO

OBJECTIVE: PI3K-AKT pathway mutations initiate a kinase cascade that characterizes endometrial cancer (EC). As kinases seldom cause oncogenic transformation without dysregulation of antagonistic phosphatases, pivotal interactions governing this pathway were explored and correlated with clinical outcomes. METHODS: After exclusion of patients with POLE mutations from The Cancer Genome Atlas EC cohort with endometrioid or serous EC, the study population was 209 patients with DNA sequencing, quantitative gene-specific RNA expression, copy number variation (CNV), and surveillance data available. Extracted data were annotated and integrated. RESULTS: A PIK3CA, PTEN, or PIK3R1 mutant (-mu) was present in 83% of patients; 57% harbored more than 1 mutation without adversely impacting progression-free survival (PFS) (P = .10). PIK3CA CNV of at least 1.1 (CNV high [-H]) was detected in 26% and linked to TP53-mu and CIP2A expression (P < .001) but was not associated with PFS (P = .24). PIK3CA expression was significantly different between those with CIP2A-H and CIP2A low (-L) expression (the endogenous inhibitor of protein phosphatase 2A [PP2A]), when stratified by PIK3CA mutational status or by PIK3CA CNV-H and CNV-L (all P < .01). CIP2A-H or PPP2R1A-mu mitigates PP2A kinase dephosphorylation, and FBXW7-mu nullifies E3 ubiquitin ligase (E3UL) oncoprotein degradation. CIP2A-H and PPP2R1A-mu (PP2A impairment) and FBXW7-mu (E3UL impairment) were associated with compromised PFS (P < .001) and were prognostically discriminatory for PIK3CA-mu and PIK3CA CNV-H tumors (P < .001). Among documented recurrences, 84% were associated with impaired PP2A (75%) and/or E3UL (20%). CONCLUSION: PP2A and E3UL deficiencies are seminal biological drivers in EC independent of PIK3CA-mu, PTEN-mu, and PIK3R1-mu and PIK3CA CNV.


Assuntos
Neoplasias do Endométrio/enzimologia , Proteína Fosfatase 2/deficiência , Ubiquitina-Proteína Ligases/deficiência , Neoplasias Abdominais , Autoantígenos/biossíntese , Autoantígenos/genética , Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/biossíntese , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Mutação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Int J Colorectal Dis ; 36(5): 911-918, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078202

RESUMO

BACKGROUND: Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that decreasing MYC expression may have significant therapeutic value. CIP2A is an oncogenic factor that regulates MYC expression. CIP2A is overexpressed in colorectal cancer (CRC), and its expression levels are an independent marker for long-term outcome of CRC. Previous studies suggested that CIP2A controls MYC protein expression on a post-transcriptional level. METHODS: To determine the mechanism by which CIP2A regulates MYC in CRC, we dissected MYC translation and stability dependent on CIP2A in CRC cell lines. RESULTS: Knockdown of CIP2A reduced MYC protein levels without influencing MYC stability in CRC cell lines. Interfering with proteasomal degradation of MYC by usage of FBXW7-deficient cells or treatment with the proteasome inhibitor MG132 did not rescue the effect of CIP2A depletion on MYC protein levels. Whereas CIP2A knockdown had marginal influence on global protein synthesis, we could demonstrate that, by using different reporter constructs and cells expressing MYC mRNA with or without flanking UTR, CIP2A regulates MYC translation. This interaction is mainly conducted by the MYC 5'UTR. CONCLUSIONS: Thus, instead of targeting MYC protein stability as reported for other tissue types before, CIP2A specifically regulates MYC mRNA translation in CRC but has only slight effects on global mRNA translation. In conclusion, we propose as novel mechanism that CIP2A regulates MYC on a translational level rather than affecting MYC protein stability in CRC.


Assuntos
Autoantígenos/metabolismo , Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Regiões 5' não Traduzidas , Autoantígenos/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(31): E7351-E7360, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30021854

RESUMO

Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more "normal" neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.


Assuntos
Autoantígenos/fisiologia , Proteínas de Membrana/fisiologia , Proteína Proto-Oncogênica N-Myc/fisiologia , Crista Neural/citologia , Células-Tronco Neurais/fisiologia , Neuroblastoma/etiologia , Autoantígenos/análise , Movimento Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/análise , Proteína Proto-Oncogênica N-Myc/análise , Neuroblastoma/patologia , Fatores de Transcrição SOXB1/análise
15.
BMC Surg ; 21(1): 297, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34144694

RESUMO

OBJECTIVE: This study aimed to investigate the prognostic value of CIP2A (cancerous inhibitor of protein phosphatase 2A) and the NLR (neutrophil-lymphocyte ratio) in the serum of patients with CRC (colorectal cancer) after resection. METHODS: The clinicopathological data of 61 patients who underwent resection between January 2012 and December 2013 were collected. The NLR and CIP2A were divided into low score groups (0) and high score groups (1) with 2.03 and 6.07 as the optimal cut-off value according to the receiver operating characteristic (ROC) curve analysis. To identify the COCN (combination of CIP2A and the NLR) score, we added CIP2A and NLR points together and categorized CRC patients into three groups. Kaplan-Meier curves were used to identify the overall survival (OS) rates of the different groups. Finally, a ROC curve was plotted to evaluate the prognostic efficacy of COCN. RESULTS: The CIP2A was associated with location (P = 0.046) and CEA (P = 0.037) in patients with CRC. Kaplan-Meier survival curves showed that the 5-year OS of patients with low level of serum CIP2A was better than that of high level. The 5-year OS of the patients in the low NLR group was better than that of those in the high NLR group. The COCN score was associated with CEA (P < 0.001) and CA19-9 (P = 0.001). The 5-year OS of the patients in the COCN 0 group was highest, followed by that of those in the COCN 1 and COCN 2 groups. Age, N stage and M stage were factors associated with 5-year OS according to the univariate and multivariate analyses (P < 0.05). The area under the curve (AUC) for COCN was largest, indicating that COCN has better prognostic power than CIP2A or the NLR alone. CONCLUSION: COCN could be used as a better prognostic biomarker for CRC than the NLR or CIP2A alone.


Assuntos
Neoplasias Colorretais , Linfócitos , Neoplasias Colorretais/diagnóstico , Humanos , Estimativa de Kaplan-Meier , Neutrófilos , Prognóstico , Estudos Retrospectivos
16.
Development ; 144(20): 3829-3839, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935709

RESUMO

In somatic cells spindle microtubules are nucleated from centrosomes that act as major microtubule organizing centers (MTOCs), whereas oocytes form meiotic spindles by assembling multiple acentriolar MTOCs without canonical centrosomes. Aurora A and Plk1 are required for these events, but the underlying mechanisms remain largely unknown. Here we show that CIP2A regulates MTOC organization by recruiting aurora A and Plk1 at spindle poles during meiotic maturation. CIP2A colocalized with pericentrin at spindle poles with a few distinct cytoplasmic foci. Although CIP2A has been identified as an endogenous inhibitor of protein phosphatase 2A (PP2A), overexpression of CIP2A had no effect on meiotic maturation. Depletion of CIP2A perturbed normal spindle organization and chromosome alignment by impairing MTOC organization. Importantly, CIP2A was reciprocally associated with CEP192, promoting recruitment of aurora A and Plk1 at MTOCs. CIP2A was phosphorylated by Plk1 at S904, which targets CIP2A to MTOCs and facilitates MTOC organization with CEP192. Our results suggest that CIP2A acts as a scaffold for CEP192-mediated MTOC assembly by recruiting Plk1 and aurora A during meiotic maturation in mouse oocytes.


Assuntos
Aurora Quinase A/genética , Autoantígenos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Membrana/fisiologia , Centro Organizador dos Microtúbulos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antígenos/metabolismo , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Proteínas de Membrana/genética , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
17.
Cell Commun Signal ; 18(1): 67, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321509

RESUMO

BACKGROUND: Increasing evidence has revealed a close correlation between cancerous inhibitor of protein phosphatase 2A (CIP2A) and cancer progression. CIP2A has been shown to participate in diverse biological processes, such as development, tumorigenic transformation and chemoresistance. However, the functions of CIP2A in colorectal cancer (CRC) and its underlying mechanisms of action are not yet completely understood. The purpose of this study was to explore its clinical significance, function and relevant pathways in CRC. METHODS: Quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC), western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the expression of CIP2A in CRC tissues, sera and CRC cell lines. The association between the expressions of CIP2A and patient survival was analyzed using the Kaplan-Meier curves. Additionally, the functional role of CIP2A in the cell lines was identified through small interfering RNA (siRNA)-mediated depletion of the protein followed by analyses of proliferation and xenograft growth in vivo using short hairpin (sh) RNAs. Effects of the C-myc inhibitor 10,058-F4 on the expressions of C-myc, and CIP2A in CRC cell lines and its potential mechanisms of action were investigated. Finally, the potential molecular pathways associated with CIP2A were screened using the phosphokinase array and identified through western blotting. RESULTS: CIP2A mRNA and protein levels were upregulated in CRC tissues compared to those of the corresponding normal tissues. It can be used as an independent prognostic indicator to determine overall survival (OS) and disease-free survival (DFS). Depletion of CIP2A substantially suppressed the growth of CRC cells and colony formation in vitro, and inhibited the growth of xenograft tumors in vivo. Additionally, the levels of CIP2A in the sera of patients with CRC were higher than those of the control subjects. Multivariate analyses revealed that the levels of CIP2A in the sera were not independent prognostic indicators in patients with CRC. Moreover, 10,058-F4 could effectively inhibit the growth of CRC cells in vitro, which could be correlated with an inhibition in the expressions of C-myc, CIP2A and its downstream regulatory anti-apoptotic proteins. Furthermore, the Human Phosphokinase Antibody Array was used to gain insights into the CIP2A-dependent intermediary signaling pathways. The results revealed that several signaling pathways were affected and the protein levels of p-p53 (S392), p-STAT5a (Y694), Cyclin D1, p-ERK1/2 and p-AKT (T308) had decreased in CIP2A-shRNA group based on the results of the western blot analysis. CONCLUSIONS: CIP2A could promote the development of CRC cells and predict poor prognosis in patients with CRC, suggesting that it may serve as a potential prognostic marker and therapeutic target against CRC. Video Abstract.


Assuntos
Autoantígenos/fisiologia , Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Resultado do Tratamento
18.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29491003

RESUMO

In most mammalian cells, the primary cilium is a microtubule-enriched protrusion of the plasma membrane and acts as a key coordinator of signaling pathways during development and tissue homeostasis. The primary cilium is generated from the basal body, and cancerous inhibitor of protein phosphatase 2A (CIP2A), the overexpression of which stabilizes c-MYC to support the malignant growth of tumor cells, is localized in the centrosome. Here, we show that CIP2A overexpression induces primary cilia disassembly through the activation of Aurora A kinase, and CIP2A depletion increases ciliated cells and cilia length in retinal pigment epithelium (RPE1) cells. CIP2A depletion also shifts metabolism toward the glycolytic pathway by altering the expression of metabolic genes related to glycolysis. However, glycolytic activation in CIP2A-depleted cells does not depend on cilia assembly, even though enhanced cilia assembly alone activates glycolytic metabolism. Collectively, these data suggest that CIP2A promotes primary cilia disassembly and that CIP2A depletion induces metabolic reprogramming independent of primary cilia.


Assuntos
Autoantígenos/metabolismo , Cílios/patologia , Glicólise , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Autoantígenos/genética , Proliferação de Células , Células Epiteliais/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Neoplasias/genética , Proteínas Oncogênicas/genética , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais
19.
Biochem J ; 476(15): 2255-2269, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350330

RESUMO

Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an adverse biomarker across many malignancies. Using K562 cells engineered to have high or low CIP2A expression, we show that high CIP2A levels significantly bias cellular energy production towards oxidative phosphorylation (OXPHOS) rather than glycolysis. Mass spectrometric analysis of CIP2A interactors and isobaric tagging for relative and absolute protein quantitation (ITRAQ) experiments identified many associated proteins, several of which co-vary with CIP2A level. Many of these CIP2A associating and co-varying proteins are involved in energy metabolism including OXPHOS, or in 5' AMP-activated protein kinase (AMPK) signalling, and manipulating AMPK activity mimics the effects of low/high CIP2A on OXPHOS. These effects are dependent on the availability of nutrients, driven by metabolic changes caused by CIP2A. CIP2A level did not affect starvation-induced AMPK phosphorylation of Unc-51 autophagy activating kinase 1 (ULK-1) at Ser555, but autophagy activity correlated with an increase in AMPK activity, to suggest that some AMPK processes are uncoupled by CIP2A, likely via its inhibition of protein phosphatase 2A (PP2A). The data demonstrate that AMPK mediates this novel CIP2A effect on energy generation in malignant cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autoantígenos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Autoantígenos/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células K562 , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Smegmamorpha
20.
Pol J Pathol ; 71(2): 87-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32729299

RESUMO

Breast cancer is the most leading cause of cancer death in females worldwide. Identification of novel biomarkers for prognosis is required. Imunohistochemical evaluation of CIP2A and ROCK-1 expressions in 126 breast tissue specimens stratified as 21 ductal hyperplasias, 17 duct carcinoma in situ (DCIS) and 88 invasive carcinomas (56 invasive ductal carcinomas NST, 32 invasive lobular carcinomas) was studied. High CIP2A expression was detected in 48.9% of invasive carcinomas. CIP2A overexpression was significantly related to Nottingham prognostic index (NPI) (p = 0.011), stage (p = 0.01), ER negativity (p = 0.031), PR negativity (p = 0.048), and HER-2 positivity (p = 0.02). CIP2A was significantly overexpressed in triple-negative breast cancer (TNBC) (p = 0.004). ROCK-1 expression was detected in 54.5% of invasive carcinomas. Statistically significant associations were observed between ROCK-1 expression and NPI (p = 0.032), stage (p = 0.002), ER negativity (p = 0.012), PR negativity (p = 0.023), HER-2 positivity (p = 0.016), and TNBC subtype (p = 0.033). A positive association between CIP2A and ROCK-1 expressions (p < 0.0001) was documented. There was a significant association between shorter overall survival and high CIP2A and positive ROCK-1 expressions (p < 0.0001) and (p < 0.0001). CIP2A and ROCK-1 expressions could be used as markers for the poor prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Autoantígenos , Biomarcadores Tumorais , Feminino , Humanos , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Prognóstico , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA