Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 76: 94-105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25173923

RESUMO

OBJECTIVE: Enhanced late Na current (late INa) induces Na-dependent Ca overload as well as proarrhythmogenic events on the cellular level that include spatio-temporally uncoordinated diastolic Ca release from the sarcoplasmic reticulum (SR) and delayed afterdepolarizations (DADs). The Ca/calmodulin-dependent protein kinase II (CaMKII) gets activated upon increases in [Ca]i and mediates diastolic SR Ca leak as well as DADs. RATIONALE: We hypothesized that increased late INa (in disease-comparable ranges) exerts proarrhythmogenic events in isolated ventricular mouse myocytes in a manner depending on CaMKII-dependent SR Ca leak. We further tested whether inhibition of disease-related late INa may reduce proarrhythmogenic SR Ca leak in myocytes from failing human hearts. METHODS: Ventricular myocytes were isolated from healthy wildtype (WT), failing CaMKIIδC transgenic (TG) mouse, and failing human hearts. ATX-II (0.25-10 nmol/L) was used to enhance late INa. Spontaneous Ca loss from the SR during diastole (Ca sparks), DADs, non-triggered diastolic Ca transients in myocytes and premature beats of isometrically twitching papillary muscles were used as readouts for proarrhythmogenic events. CaMKII autophosphorylation was assessed by immunoblots. Late INa was inhibited using ranolazine (Ran, 10 µmol/L) or TTX (2 µmol/L), and CaMKII by KN-93 (1 µmol/L) or AIP (1 µmol/L). RESULTS: In WT myocytes, sub-nanomolar ATX-II exposure (0.5 nmol/L) enhanced late INa by ~60%, which resulted in increased diastolic SR Ca loss despite unaltered SR Ca content. In parallel, DADs and non-triggered diastolic Ca transients arose. Inhibition of enhanced late INa by RAN or TTX significantly attenuated diastolic SR Ca loss and suppressed DADs as well as mechanical alternans in mouse and diastolic SR Ca loss in failing human myocytes. ATX-II caused Ca-dependent CaMKII-activation without changes in protein expression, which was reversible by Ran or AIP. Conversely, CaMKII-inhibition decreased diastolic SR Ca loss, DADs and non-triggered diastolic Ca transients despite ATX-II-exposure. Finally, failing mouse myocytes with increased CaMKII activity (TG CaMKIIδC) showed an even aggravated diastolic SR Ca loss that was associated with an increased frequency of non-triggered diastolic Ca transients upon enhanced late INa. CONCLUSIONS: Increased late INa (in disease-comparable ranges) induces proarrhythmogenic events during diastole in healthy and failing mouse myocytes, which are mediated via CaMKII-dependent SR Ca loss. Inhibition of late INa not only attenuated these cellular arrhythmias in mouse myocytes but also in failing human myocytes indicating some antiarrhythmic potential for an inhibition of the elevated late INa/CaMKII signaling pathway in this setting.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/enzimologia , Sódio/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Venenos de Cnidários/farmacologia , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Retículo Sarcoplasmático/metabolismo
2.
Antioxidants (Basel) ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204213

RESUMO

BACKGROUND: Sleep-disordered breathing (SDB) is associated with increased oxidant generation. Oxidized Ca/calmodulin kinase II (CaMKII) can contribute to atrial arrhythmias by the stimulation of sarcoplasmic reticulum Ca release events, i.e., Ca sparks. METHODS: We prospectively enrolled 39 patients undergoing cardiac surgery to screen for SDB and collected right atrial appendage biopsies. RESULTS: SDB was diagnosed in 14 patients (36%). SDB patients had significantly increased levels of oxidized and activated CaMKII (assessed by Western blotting/specific pulldown). Moreover, SDB patients showed a significant increase in Ca spark frequency (CaSpF measured by confocal microscopy) compared with control subjects. CaSpF was 3.58 ± 0.75 (SDB) vs. 2.49 ± 0.84 (no SDB) 1/100 µm-1s-1 (p < 0.05). In linear multivariable regression models, SDB severity was independently associated with increased CaSpF (B [95%CI]: 0.05 [0.03; 0.07], p < 0.001) after adjusting for important comorbidities. Interestingly, 30 min exposure to the CaMKII inhibitor autocamtide-2 related autoinhibitory peptide normalized the increased CaSpF and eliminated the association between SDB and CaSpF (B [95%CI]: 0.01 [-0.1; 0.03], p = 0.387). CONCLUSIONS: Patients with SDB have increased CaMKII oxidation/activation and increased CaMKII-dependent CaSpF in the atrial myocardium, independent of major clinical confounders, which may be a novel target for treatment of atrial arrhythmias in SDB.

3.
ESC Heart Fail ; 7(5): 2871-2883, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691522

RESUMO

AIMS: Excessive activation of Ca/calmodulin-dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIÉ£-selective, ATP-competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). METHODS AND RESULTS: In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch-clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n - 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n - 1' χ2 test. CONCLUSIONS: RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.


Assuntos
Calmodulina , Insuficiência Cardíaca , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Camundongos , Retículo Sarcoplasmático/metabolismo
4.
ESC Heart Fail ; 7(5): 2992-3002, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710603

RESUMO

AIMS: Inhibition of neprilysin and angiotensin II receptor by sacubitril/valsartan (Val) (LCZ696) reduces mortality in heart failure (HF) patients compared with sole inhibition of renin-angiotensin system. Beneficial effects of increased natriuretic peptide levels upon neprilysin inhibition have been proposed, whereas direct effects of sacubitrilat (Sac) (LBQ657) on myocardial Ca2+ cycling remain elusive. METHODS AND RESULTS: Confocal microscopy (Fluo-4 AM) was used to investigate pro-arrhythmogenic sarcoplasmic reticulum (SR) Ca2+ leak in freshly isolated murine and human ventricular cardiomyocytes (CMs) upon Sac (40 µmol/L)/Val (13 µmol/L) treatment. The concentrations of Sac and Val equalled plasma concentrations of LCZ696 treatment used in PARADIGM-HF trial. Epifluorescence microscopy measurements (Fura-2 AM) were performed to investigate effects on systolic Ca2+ release, SR Ca2+ load, and Ca2+ -transient kinetics in freshly isolated murine ventricular CMs. The impact of Sac on myocardial contractility was evaluated using in toto-isolated, isometrically twitching ventricular trabeculae from human hearts with end-stage HF. Under basal conditions, the combination of Sac/Val did not influence diastolic Ca2+ -spark frequency (CaSpF) nor pro-arrhythmogenic SR Ca2 leak in isolated murine ventricular CMs (n CMs/hearts = 80/7 vs. 100/7, P = 0.91/0.99). In contrast, Sac/Val treatment reduced CaSpF by 35 ± 9% and SR Ca2+ leak by 45 ± 9% in CMs put under catecholaminergic stress (isoproterenol 30 nmol/L, n = 81/7 vs. 62/7, P < 0.001 each). This could be attributed to Sac, as sole Sac treatment also reduced both parameters by similar degrees (reduction of CaSpF by 57 ± 7% and SR Ca2+ leak by 76 ± 5%; n = 101/4 vs. 108/4, P < 0.01 each), whereas sole Val treatment did not. Systolic Ca2+ release, SR Ca2+ load, and Ca2+ -transient kinetics including SERCA activity (kSERCA ) were not compromised by Sac in isolated murine CMs (n = 41/6 vs. 39/6). Importantly, the combination of Sac/Val and Sac alone also reduced diastolic CaSpF and SR Ca2+ leak (reduction by 74 ± 7%) in human left ventricular CMs from patients with end-stage HF (n = 71/8 vs. 78/8, P < 0.05 each). Myocardial contractility of human ventricular trabeculae was not acutely affected by Sac treatment as the developed force remained unchanged over a time course of 30 min (n trabeculae/hearts = 3/3 vs. 4/3). CONCLUSION: This study demonstrates that neprilysin inhibitor Sac directly improves Ca2+ homeostasis in human end-stage HF by reducing pro-arrhythmogenic SR Ca2+ leak without acutely affecting systolic Ca2+ release and inotropy. These effects might contribute to the mortality benefits observed in the PARADIGM-HF trial.


Assuntos
Insuficiência Cardíaca , Retículo Sarcoplasmático , Animais , Arritmias Cardíacas , Cálcio , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Camundongos , Miócitos Cardíacos
5.
ESC Heart Fail ; 5(4): 642-648, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30117720

RESUMO

AIMS: The EMPA-REG OUTCOME study showed reduced mortality and hospitalization due to heart failure (HF) in diabetic patients treated with empagliflozin. Overexpression and Ca2+ -dependent activation of Ca2+ /calmodulin-dependent kinase II (CaMKII) are hallmarks of HF, leading to contractile dysfunction and arrhythmias. We tested whether empagliflozin reduces CaMKII- activity and improves Ca2+ -handling in human and murine ventricular myocytes. METHODS AND RESULTS: Myocytes from wild-type mice, mice with transverse aortic constriction (TAC) as a model of HF, and human failing ventricular myocytes were exposed to empagliflozin (1 µmol/L) or vehicle. CaMKII activity was assessed by CaMKII-histone deacetylase pulldown assay. Ca2+ spark frequency (CaSpF) as a measure of sarcoplasmic reticulum (SR) Ca2+ leak was investigated by confocal microscopy. [Na+ ]i was measured using Na+ /Ca2+ -exchanger (NCX) currents (whole-cell patch clamp). Compared with vehicle, 24 h empagliflozin exposure of murine myocytes reduced CaMKII activity (1.6 ± 0.7 vs. 4.2 ± 0.9, P < 0.05, n = 10 mice), and also CaMKII-dependent ryanodine receptor phosphorylation (0.8 ± 0.1 vs. 1.0 ± 0.1, P < 0.05, n = 11 mice), with similar results upon TAC. In murine myocytes, empagliflozin reduced CaSpF (TAC: 1.7 ± 0.3 vs. 2.5 ± 0.4 1/100 µm-1  s-1 , P < 0.05, n = 4 mice) but increased SR Ca2+ load and Ca2+ transient amplitude. Importantly, empagliflozin also significantly reduced CaSpF in human failing ventricular myocytes (1 ± 0.2 vs. 3.3 ± 0.9, P < 0.05, n = 4 patients), while Ca2+ transient amplitude was increased (F/F0 : 0.53 ± 0.05 vs. 0.36 ± 0.02, P < 0.05, n = 3 patients). In contrast, 30 min exposure with empagliflozin did not affect CaMKII activity nor Ca2+ -handling but significantly reduced [Na+ ]i . CONCLUSIONS: We show for the first time that empagliflozin reduces CaMKII activity and CaMKII-dependent SR Ca2+ leak. Reduced Ca2+ leak and improved Ca2+ transients may contribute to the beneficial effects of empagliflozin in HF.


Assuntos
Compostos Benzidrílicos/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Glucosídeos/farmacologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
Channels (Austin) ; 11(5): 415-425, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28636428

RESUMO

Ryanodine Receptors (RyRs) are intracellular Ca2+ channels that mediate Ca2+ flux from the sarco(endo)plasmic reticulum in many cell types. The interaction of RyRs with FK506-binding proteins (FKBPs) has been proposed as an important regulatory mechanism, where the loss of this interaction leads to channel dysfunction. In the heart, phosphorylation of RyR has been suggested to disrupt the RyR-FKBP interaction promoting altered Ca2+ signaling, heart failure and arrhythmias. However, the functional result of FKBP interaction with RyR and how this interaction is regulated remains highly controversial. Recently, high resolution structures of RyR have provided novel aspects to the ongoing debate. This review will discuss the most recent functional data in light of these new structures.


Assuntos
Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Fosforilação , Ligação Proteica , Transdução de Sinais
7.
Free Radic Biol Med ; 63: 338-49, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23732518

RESUMO

In this review article we give an overview of current knowledge with respect to redox-sensitive alterations in Na(+) and Ca(2+) handling in the heart. In particular, we focus on redox-activated protein kinases including cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), as well as on redox-regulated downstream targets such as Na(+) and Ca(2+) transporters and channels. We highlight the pathological and physiological relevance of reactive oxygen species and some of its sources (such as NADPH oxidases, NOXes) for excitation-contraction coupling (ECC). A short outlook with respect to the clinical relevance of redox-dependent Na(+) and Ca(2+) imbalance will be given.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Oxidantes/metabolismo , Sódio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Oxirredução , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA