RESUMO
Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.
Assuntos
Calotropis , Porcelana Dentária , Ligas Metalo-Cerâmicas , Neoplasias da Próstata , Titânio , Masculino , Humanos , Linhagem Celular Tumoral , Calotropis/química , Calotropis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Autofagia , Proliferação de CélulasRESUMO
The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.
Assuntos
Calotropis , Neoplasias Hepáticas , Extratos Vegetais , Peixe-Zebra , Calotropis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Folhas de Planta/química , Feminino , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/análiseRESUMO
Background & objectives Despite advancements in antiretroviral therapy, drug-resistant strains of HIV (human immunodeficiency virus) remain a global health concern. Natural compounds from medicinal plants offer a promising avenue for developing new HIV-1 PR (protease) inhibitors. This study aimed to explore the potential of compounds derived from Calotropis procera, a medicinal plant, as inhibitors of HIV-1 PR. Methods This in silico study utilized natural compound information and the crystal structure of HIV-1 PR. Molecular docking of 17 steroidal cardenolides from Calotropis procera against HIV-1 PR was performed using AutoDock 4.2 to identify compounds with higher antiviral potential. A dynamic simulation study was performed to provide insights into the stability, binding dynamics, and potential efficacy of the top potential antiviral compound as an HIV-1 therapeutic. Results We found that all tested cardenolides had higher binding affinities than Amprenavir, indicating their potential as potent HIV-1 PR inhibitors. Voruscharin and uscharidin displayed the strongest interactions, forming hydrogen bonds and hydrophobic interactions with HIV-1 PR. Voruscharin showed improved stability with lower RMSD (Root Mean Square Deviation) values and reduced fluctuations in binding site residues but increased flexibility in certain regions. The radius of gyration analysis confirmed a stable binding pose between HIV-1 PR and Voruscharin. Interpretation & conclusions These findings suggest that Calotropis procera could potentially be a source of compounds for developing novel HIV-1 PR inhibitors, contributing to the efforts to combat HIV. Further studies and clinical trials are needed to evaluate the safety and efficacy of these compounds as potential drug candidates for the treatment of HIV-1 infection.
Assuntos
Calotropis , Cardenolídeos , Protease de HIV , HIV-1 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Calotropis/química , HIV-1/efeitos dos fármacos , Humanos , Cardenolídeos/química , Cardenolídeos/farmacologia , Protease de HIV/química , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Sítios de Ligação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologiaRESUMO
Hepatic coccidiosis is an infectious and mortal disease that causes global economic losses in rabbits. The research aimed to assess the efficacy of Calotropis procure leaf extracts on the inhibition of Eimeria stiedae oocysts and to determine the optimal dosage for suppressing the parasite's infective phase. In this experiment, oocyst samples per milliliter were tested, and 6-well plates (2 mL) of 2.5% potassium dichromate solution containing 102 non-sporulated oocysts on Calotropis procera leaf extracts were exposed after 24, 48, 72, and 96 h, and the treatments were as follows: a nontreated control, 25%, 50%, 100%, and 150% of C. procera for oocyst activities. In addition, amprolium was utilized as a reference drug. The Calotropis procera was analyzed by GC-Mass, and results showed that the botanical extract contained 9 chemical components that were able to inhibit the oocysts of E. stiedae at 100% and 150% concentrations by about 78% and 93%, respectively. In general, an increase in the incubation period and a greater dose resulted in a decrease in the inhibition rate. The results showed that C. procera has an effective ability, inhibitory potential, and protective effect on the coccidian oocyst sporulation of E. stiedae. It can be used in the disinfection and sterilization of poultry and rabbit houses to get rid of Eimeria oocysts.
Assuntos
Calotropis , Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Coelhos , Eimeria/fisiologia , Oocistos , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , GalinhasRESUMO
Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of -40.2, -35.1, -34.3 and -34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.
RESUMO
Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April-May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.
Assuntos
Calotropis , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Frutas , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch-casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC-MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract's antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60-1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.
Assuntos
Actinobacteria , Anti-Infecciosos , Calotropis , Streptomyces , Actinobacteria/genética , Ágar , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Calotropis/química , Ciclofosfamida , Camundongos , Extratos Vegetais/química , RNA Ribossômico 16S , Rizosfera , Staphylococcus aureus , Streptomyces/genéticaRESUMO
This study aimed to evaluate the antioxidant activity and total phenolic content (TPC) and total flavonoid content (TFC) of crude extracts obtained from three Asclepiadaceae species, namely, Calotropis procera L., Peruglaria tomentosa L., and Pentatropis spiralis (Forsk.) Decne. Both butanol and aq. methanol extracts of the three species showed the highest amount of phenol and flavonoid contents, which exhibited the greatest antioxidant activity in the scavenging of 2,2-diphenyl-2-picrylhydrazyl free radical (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS), ferrous chelating effect (FIC), and hydroxyl radical (HDR) assays. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, sponins, flavonoids, terpenoids, and glycosides. LC-MS analysis was carried out to identify the major compounds from each crude extract. A total of 12 phenolic compounds in the extracts of the 3 species were identified and quantified, including 9 flavonoids, 2 hydroxybenzoic acids, and 3 hydroxycinnamic acids. The current study also revealed a good correlation between total phenolic contents and the observed antioxidant activity of the crude extracts.
Assuntos
Antioxidantes/análise , Apocynaceae/química , Flavonoides/análise , Extratos Vegetais/química , Folhas de Planta/química , Apocynaceae/crescimento & desenvolvimento , Cromatografia Líquida , Jordânia , Folhas de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Espectrometria de Massas em TandemRESUMO
The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.
Assuntos
Calotropis/metabolismo , Quitosana/química , Hidrogéis/química , Neovascularização Fisiológica , Cicatrização , Animais , Materiais Biocompatíveis , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Congelamento , Látex/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Polímeros/química , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , TermogravimetriaRESUMO
Calotropis procera produces a milky sap containing proteolytic enzymes. At low concentrations, they induce milk-clotting (60 µg/ml) and to dehair hides (0.05 and 0.1%). A protocol for obtaining the enzymes is reported. The latex was mixed with distilled water and the mixture was cleaned through centrifugation. It was dialyzed with distilled water and centrifuged again to recover the soluble fraction [EP]. The dialyze is a key feature of the process. EP was characterized in terms of protein profile, chemical stability, among other criteria. Wild plants belonging to ten geographic regions and grown in different ecological conditions were used as latex source. Collections were carried out, spaced at three-month, according to the seasons at the site of the study. Proteolytic activity was measured as an internal marker and for determining stability of the samples. EP was also analyzed for metal content and microbiology. EP showed similar magnitude of proteolysis, chromatographic and electrophoretic profiles of proteins. Samples stored at 25 °C exhibited reduced solubility (11%) and proteolytic capacity (11%) after six months. Enzyme autolysis was negligible. Microbiological and metal analyses revealed standard quality of all the samples tested. EP induced milk clotting and hide dehairing after storage for up to six months.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Calotropis/enzimologia , Técnicas de Química Analítica/normas , Ecossistema , Látex/química , Proteínas de Plantas/metabolismo , Estações do Ano , Pelo Animal/efeitos dos fármacos , Animais , Ácido Aspártico Endopeptidases/análise , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/farmacologia , Bovinos , Cabras , Remoção de Cabelo/métodos , Látex/isolamento & purificação , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteólise , Padrões de Referência , SolubilidadeRESUMO
In developing countries, crop deterioration is mainly caused by inappropriate storage conditions that promote insect infestation. Synthetic pesticides are associated with serious adverse effects on humans and the environment. Thus, finding alternative "green" insecticides is a very pressing need. Calotropis procera (Aiton) Dryand (Apocynaceae) growing in Saudi Arabia was selected for this purpose. LC-MS/MS analysis was applied to investigate the metabolic composition of different C. procera extracts. Particularly, C. procera latex and leaves showed a high presence of cardenolides including calactin, uscharidin, 15ß-hydroxy-calactin, 16ß-hydroxy-calactin, and 12ß-hydroxy-calactin. The ovicidal activity of the extracts from different plant organs (flowers, leaves, branches, roots), and of the latex, against Cadra cautella (Walker) (Lepidoptera, Pyralidae) was assessed. Extracts of C. procera roots displayed the most potent activity with 50% of C. cautella eggs not hatching at 10.000 ppm (1%).
Assuntos
Calotropis/química , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Flores/química , Látex/química , Mariposas , Folhas de Planta/química , Raízes de Plantas/químicaRESUMO
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.
RESUMO
Some studies focused on metabolic relationships between plants and their endophytic bacterial associates, and more research is required to generate critical evidence for these relationships. In the current interest, we tried to confirm the relationship between the traditional medicinal plant, Calotropis procera (Aiton) W.T. Aiton, and its associated endophytes, Bacillus siamensis and Bacillus amyloliquefaciens, as the first matching study regarding the production of bioactive secondary metabolites from the plant vis-a-vis its bacterial endophytes.Secondary metabolites of both the plant and its endophytic bacteria were extracted using different solvents, e.g., water, methanol, and ethyl acetate. All extracts exhibited high quantities of phenolics, flavonoids, tannins, and saponins. In addition, they showed significant antioxidant capacity which was found to be positively correlated with total phenolic contents. The highest total antioxidant capacity (99.28 ± 0.0 mg AA equivalent/g extract) was measured for the aqueous extract of B. siamensis.Antibacterial activity of the different extracts was evaluated against certain pathogenic bacteria, i.e., Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Salmonella typhi, Serratia marcescens, and Staphylococcus aureus. It was strikingly found that the broadest antibacterial spectrum was revealed by extracts of both C. procera and its endophytic B. siamensis. Interestingly, antibacterial activity was significantly correlated to phenolic and flavonoid contents.
Assuntos
Bacillus amyloliquefaciens/química , Bacillus/química , Calotropis/química , Calotropis/microbiologia , Plantas Medicinais/química , Plantas Medicinais/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/análise , Bacillus/fisiologia , Bacillus amyloliquefaciens/fisiologia , Bactérias/efeitos dos fármacos , Endófitos/química , Endófitos/fisiologia , Flavonoides/análise , Testes de Sensibilidade Microbiana , Fenóis/análise , Extratos Vegetais/química , Staphylococcus aureus , Taninos/análiseRESUMO
OBJECTIVE AND DESIGN: Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS: Male Golden Sirius hamsters were used in all treatments. TREATMENT: The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS: Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS: PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS: Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.
Assuntos
Anti-Inflamatórios/uso terapêutico , Calotropis/química , Látex/química , Proteínas de Plantas/uso terapêutico , Estomatite/tratamento farmacológico , Animais , Fluoruracila/toxicidade , Masculino , Mesocricetus , Estomatite/patologiaRESUMO
Endophytes, a potential source of bioactive secondary metabolites, were isolated from the widely used medicinal plant Calotropis procera Ait. Approximately 675 segments from 15 Calotropis procera plants and 15 latex samples were assessed for the presence of endophytic fungi. Finally, eight fungal species were isolated and identified based on their macro- and micro-morphology. The endophytic fungal filtrates were screened for their antimicrobial activity against 11 important pathogenic micro-organisms. The filtrates of nanoparticles were from three of the eight isolated endophytic fungi, namely, Penicillium chrysogenum, Aspergillus fumigatus and Aspergillus flavus, and were highly effective against the tested bacteria, while the remaining endophytic fungal filtrates displayed low activity.
Assuntos
Antibacterianos/biossíntese , Calotropis/microbiologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Nanopartículas/microbiologia , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/metabolismo , Endófitos/classificação , Fungos/classificação , Testes de Sensibilidade Microbiana/métodos , Penicillium chrysogenum/isolamento & purificação , Penicillium chrysogenum/metabolismoRESUMO
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
RESUMO
Calotropis procera (CP; Apocynaceae) is reported to have several neuroprotective activities however it's anti-depressant activity yet to be established. Therefore, the present study was proposed to evaluate the anti-depressant activity of the standardized ethanolic extract of CP (ECP) in chronic unpredictable mild stress (CUMS) paradigm exposed male rats. Animals were exposed to CUMS from day-1 (D-1) to D-28 except control group animals of the experimental schedule. ECP (50, 100 and 200 mg/kg, p.o.) and Imipramin (15.0 mg/kg, p.o.) were administered for seven consecutive days after CUMS paradigm. On D-35, ECP (200 mg/kg) significantly attenuated immobility period of the animals in both forced-swim and tail suspension and improved behavioural parameters in open-field and anhedonia in sucrose feeding tests. ECP (200 mg/kg) attenuated CUMS-induced hyperactivity of HPA-axis function. Further, ECP (200 mg/kg) mitigated CUMS-induced decrease in serotonin (5-HT), increase in 5-hydroxy indole acetic acid (5-HIAA) and increase in the ratio of 5-HIAA/5-HT in hippocampus and pre-frontal cortex. The CUMS-induced decrease in the level of expression of BDNF was significantly reversed with ECP (200 mg/kg) treatment. Moreover, ECP (200 mg/kg) significantly reduced the CUMS-induced decrease in the mitochondrial function and integrity in terms of level of formazan formed and intensity of tetramethyl rhodamine methylester dye in both the brain regions respectively. Therefore, ECP (200 mg/kg) mitigates CUMS-induced alterations in the behaviours, HPA-axis function, serotonergic activity, neurogenesis and mitochondrial function in the rodents. Thus, it can be assumed that ECP could be a potential alternative candidate in the management of depression.
Assuntos
Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Calotropis , Depressão/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Serotonina/metabolismo , Estresse Psicológico/complicaçõesRESUMO
Cathepsin L of cancer cells has been shown to play an important role in degradation of extracellular matrix for metastasis. In order to reduce cell invasion, cathepsin L propeptide-like proteins which are classified as the I29 family in the MEROPS peptidase database were characterized from Calotropis procera R. Br., rich in cysteine protease. Of 19 candidates, the cloned and expressed recombinant SnuCalCp03-propeptide (rSnuCalCp03-propeptide) showed a low nanomolar Ki value of 2.3 ± 0.2 nM against cathepsin L. A significant inhibition of tumor cell invasion was observed with H1975, HT29, MDA-BM-231, PANC1, and PC3 with a 76, 67, 67, 63, and 79% reduction, respectively, in invasion observed in the presence of 400 nM of the rSnuCalCp03-propeptide. In addition, thermal and pH study showed rSnuCalCp03-propeptide consisting of secondary structures was stable at a broad range of temperatures (30-70 °C) and pH (2-10, except for 5 which is close to the isoelectric point of 5.2).
Assuntos
Calotropis/química , Catepsina L/metabolismo , Clonagem Molecular , Precursores Enzimáticos/metabolismo , Catepsina L/química , Catepsina L/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-AtividadeRESUMO
The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1ß, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium.
Assuntos
Calotropis/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Extratos Vegetais/química , Cicatrização/efeitos dos fármacos , Animais , Látex/farmacologia , Masculino , CamundongosRESUMO
CONTEXT: Sickle cell disease is a common inherited blood disorder affecting millions of people worldwide. Due to lack of progress in drug discovery for a suitable treatment, sufferers often turn to traditional medicines that take advantage of the plant extracts activity used by traditional healers. OBJECTIVE: This study optimizes an anti-sickling screening test to identify preparations capable of reverting sickle cells back to the morphology of normal red blood cells. We focused on the miniaturization and practicability of the assay, so that it can be adapted to the laboratory conditions commonly found in less developed countries. MATERIALS AND METHODS: We tested two traditional anti-sickling herbal medicines, FACA® and DREPANOSTAT®, composed of Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler (Rutaceae) and Calotropis procera (Aiton) Dryand. (Apocynaceae) at screening concentrations of hydroethanol extracts from 0.2 to 1 mg/mL. Potential bioactive molecules present in the extracts were profiled using Ultra High Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UHPLC-HRMS/MS) method, identified through HRMS, MS/MS spectra and in silico fragmentation tools. RESULTS: Hydroethanol extracts of FACA® and DREPANOSTAT® showed low anti-sickling activity, inhibiting less than 10% of the sickling process. The UHPLC-HRMS/MS profiles identified 28 compounds (18 in FACA® and 15 in DREPANOSTAT®, including common compounds) among which l-phenylalanine is already described as potential anti-sickling agent. When used as positive control, 7 mg/mL phenylalanine reduced the sickled RBC to 52%. DISCUSSION AND CONCLUSIONS: This assay has been optimized for the easy screening of plant extracts or extracted compounds from bioassay guided fractionation, valuable to laboratories from less developed countries.