Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
1.
Cell ; 185(24): 4488-4506.e20, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36318922

RESUMO

When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Assuntos
Proteínas Serina-Treonina Quinases , Fosforilação , Tamanho Celular
2.
Mol Cell ; 79(6): 978-990.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32857953

RESUMO

Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.


Assuntos
Endorribonucleases/genética , Precursores de RNA/genética , Estresse Fisiológico/genética , Transativadores/genética , Terminação da Transcrição Genética , Animais , Tamanho Celular , Sobrevivência Celular/genética , Humanos , Pressão Osmótica/fisiologia , Proteoma/genética
3.
Annu Rev Physiol ; 86: 429-452, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931170

RESUMO

The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.


Assuntos
Equilíbrio Hidroeletrolítico , Água , Humanos
4.
Trends Biochem Sci ; 48(11): 949-962, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716870

RESUMO

Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.


Assuntos
Senescência Celular , Oxirredução
5.
EMBO J ; 41(13): e108719, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35702882

RESUMO

Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli in order to ensure precise context-dependent responses. This requires dynamic cellular signalling events that ensure homeostasis and plasticity when needed. A less well-understood process is cellular response to elevated interstitial fluid pressure, where the cell senses and responds to changes in extracellular hydrostatic pressure. Here, using quantitative label-free digital holographic imaging, combined with genome editing, biochemical assays and confocal imaging, we analyse the temporal cellular response to hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, the cell responds by rapid, dramatic and reversible changes in cellular volume. We show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling pathway, control cell volume and that cells without YAP and TAZ have lower plasma membrane tension. We present direct evidence that YAP/TAZ drive the cellular response to hydrostatic pressure, a process that is at least partly mediated via clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic pressure, YAP/TAZ are activated and induce TEAD-mediated transcription and expression of cellular components involved in dynamic regulation of cell volume and extracellular matrix. This cellular response confers a feedback loop that allows the cell to robustly respond to changes in interstitial fluid pressure.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Homeostase , Pressão Hidrostática , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946197

RESUMO

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

7.
Pflugers Arch ; 476(6): 923-937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627262

RESUMO

Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Meduloblastoma , Receptores Acoplados a Proteínas G , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Tamanho Celular , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Concentração de Íons de Hidrogênio , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
8.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35662333

RESUMO

Cells exist in an astonishing range of volumes across and within species. However, our understanding of cell size control remains limited, owing in large part to the challenges associated with accurate determination of cell volume. Much of our comprehension of size regulation derives from yeast models, but even for these morphologically stereotypical cells, assessment of cell volume has mostly relied on proxies and extrapolations from two-dimensional measurements. Recently, the fluorescence exclusion method (FXm) was developed to evaluate the size of mammalian cells, but whether it could be applied to smaller cells remained unknown. Using specifically designed microfluidic chips and an improved data analysis pipeline, we show here that FXm reliably detects subtle differences in the volume of fission yeast cells, even for those with altered shapes. Moreover, it allows for the monitoring of dynamic volume changes at the single-cell level with high time resolution. Collectively, our work highlights how the coupling of FXm with yeast genetics will bring new insights into the complex biology of cell growth.


Assuntos
Saccharomyces cerevisiae , Schizosaccharomyces , Animais , Ciclo Celular , Tamanho Celular , Mamíferos , Microfluídica , Saccharomyces cerevisiae/genética
9.
J Mol Recognit ; 37(5): e3099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38923720

RESUMO

Protein concentration (PC) is an essential characteristic of cells and organelles; it determines the extent of macromolecular crowding effects and serves as a sensitive indicator of cellular health. A simple and direct way to quantify PC is provided by brightfield-based transport-of-intensity equation (TIE) imaging combined with volume measurements. However, since TIE is based on geometric optics, its applicability to micrometer-sized particles is not clear. Here, we show that TIE can be used on particles with sizes comparable to the wavelength. At the same time, we introduce a new ImageJ plugin that allows TIE image processing without resorting to advanced mathematical programs. To convert TIE data to PC, knowledge of particle volumes is essential. The volumes of bacteria or other isolated particles can be measured by displacement of an external absorbing dye ("transmission-through-dye" or TTD microscopy), and for spherical intracellular particles, volumes can be estimated from their diameters. We illustrate the use of TIE on Escherichia coli, mammalian nucleoli, and nucleolar fibrillar centers. The method is easy to use and achieves high spatial resolution.


Assuntos
Escherichia coli , Organelas , Escherichia coli/metabolismo , Organelas/metabolismo , Organelas/química , Processamento de Imagem Assistida por Computador , Animais , Humanos , Nucléolo Celular/metabolismo
10.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263015

RESUMO

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Aquaporina 4 , Astrócitos , Biomarcadores , Plectina , Isoformas de Proteínas
11.
Genome ; 67(5): 125-138, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198661

RESUMO

Cells change shape, move, divide, and die to sculpt tissues. Common to all these cell behaviours are cell size changes, which have recently emerged as key contributors to tissue morphogenesis. Cells can change their mass-the number of macromolecules they contain-or their volume-the space they encompass. Changes in cell mass and volume occur through different molecular mechanisms and at different timescales, slow for changes in mass and rapid for changes in volume. Therefore, changes in cell mass and cell volume, which are often linked, contribute to the development and shaping of tissues in different ways. Here, we review the molecular mechanisms by which cells can control and alter their size, and we discuss how changes in cell mass and volume contribute to tissue morphogenesis. The role that cell size control plays in developing embryos is only starting to be elucidated. Research on the signals that control cell size will illuminate our understanding of the cellular and molecular mechanisms that drive tissue morphogenesis.


Assuntos
Tamanho Celular , Morfogênese , Animais , Humanos
12.
Cell Mol Life Sci ; 80(2): 48, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36682037

RESUMO

Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.


Assuntos
Aquaporinas , Endometriose , Feminino , Humanos , Aquaporinas/metabolismo , Isoformas de Proteínas/metabolismo , Movimento Celular/fisiologia
13.
Cryobiology ; 114: 104795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984597

RESUMO

Human red blood cells (RBC) exposed to hypertonic media are subject to post-hypertonic lysis - an injury that only develops during resuspension to an isotonic medium. The nature of post-hypertonic lysis was previously hypothesized to be osmotic when cation leaks were observed, and salt loading was suggested as a cause of the cell swelling upon resuspension in an isotonic medium. However, it was problematic to account for the salt loading since the plasma membrane of human RBCs was considered impermeable to cations. In this study, the hypertonicity-related behavior of human RBCs is revisited within the framework of modern cell physiology, considering current knowledge on membrane ion transport mechanisms - an account still missing. It is recognized here that the hypertonic behavior of human RBCs is consistent with the acute regulatory volume increase (RVI) response - a healthy physiological reaction initiated by cells to regulate their volume by salt accumulation. It is shown by reviewing the published studies that human RBCs can increase cation conductance considerably by activating cell volume-regulated ion transport pathways inactive under normal isotonic conditions and thus facilitate salt loading. A simplified physiological model accounting for transmembrane ion fluxes and membrane voltage predicts the isotonic cell swelling associated with increased cation conductance, eventually reaching hemolytic volume. The proposed involvement of cell volume regulation mechanisms shows the potential to explain the complex nature of the osmotic response of human RBCs and other cells. Cryobiological implications, including mechanisms of cryoprotection, are discussed.


Assuntos
Criopreservação , Eritrócitos , Humanos , Criopreservação/métodos , Eritrócitos/fisiologia , Transporte Biológico , Cátions , Tamanho Celular
14.
Handb Exp Pharmacol ; 283: 181-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37468723

RESUMO

Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.


Assuntos
Canais de Cloreto , Cloretos , Humanos , Cloretos/metabolismo , Prótons , Proteínas de Membrana , Ânions/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916290

RESUMO

Recent studies have revealed that extensive heterogeneity of biological systems arises through various routes ranging from intracellular chromosome segregation to spatiotemporally varying biochemical stimulations. However, the contribution of physical microenvironments to single-cell heterogeneity remains largely unexplored. Here, we show that a homogeneous population of non-small-cell lung carcinoma develops into heterogeneous subpopulations upon application of a homogeneous physical compression, as shown by single-cell transcriptome profiling. The generated subpopulations stochastically gain the signature genes associated with epithelial-mesenchymal transition (EMT; VIM, CDH1, EPCAM, ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4), respectively. Trajectory analysis revealed two bifurcated paths as cells evolving upon the physical compression, along each path the corresponding signature genes (epithelial or mesenchymal) gradually increase. Furthermore, we show that compression increases gene expression noise, which interplays with regulatory network architecture and thus generates differential cell-fate outcomes. The experimental observations of both single-cell sequencing and single-molecule fluorescent in situ hybridization agrees well with our computational modeling of regulatory network in the EMT process. These results demonstrate a paradigm of how mechanical stimulations impact cell-fate determination by altering transcription dynamics; moreover, we show a distinct path that the ecology and evolution of cancer interplay with their physical microenvironments from the view of mechanobiology and systems biology, with insight into the origin of single-cell heterogeneity.


Assuntos
Tamanho Celular , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fenômenos Biofísicos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única
16.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341116

RESUMO

During growth, cells must expand their cell volumes in coordination with biomass to control the level of cytoplasmic macromolecular crowding. Dry-mass density, the average ratio of dry mass to volume, is roughly constant between different nutrient conditions in bacteria, but it remains unknown whether cells maintain dry-mass density constant at the single-cell level and during nonsteady conditions. Furthermore, the regulation of dry-mass density is fundamentally not understood in any organism. Using quantitative phase microscopy and an advanced image-analysis pipeline, we measured absolute single-cell mass and shape of the model organisms Escherichia coli and Caulobacter crescentus with improved precision and accuracy. We found that cells control dry-mass density indirectly by expanding their surface, rather than volume, in direct proportion to biomass growth-according to an empirical surface growth law. At the same time, cell width is controlled independently. Therefore, cellular dry-mass density varies systematically with cell shape, both during the cell cycle or after nutrient shifts, while the surface-to-mass ratio remains nearly constant on the generation time scale. Transient deviations from constancy during nutrient shifts can be reconciled with turgor-pressure variations and the resulting elastic changes in surface area. Finally, we find that plastic changes of cell width after nutrient shifts are likely driven by turgor variations, demonstrating an important regulatory role of mechanical forces for width regulation. In conclusion, turgor-dependent cell width and a slowly varying surface-to-mass coupling constant are the independent variables that determine dry-mass density.


Assuntos
Escherichia coli/química , Escherichia coli/citologia , Microscopia de Contraste de Fase/métodos , Bactérias/química , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Osmose , Análise de Célula Única , Imagem com Lapso de Tempo
17.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785592

RESUMO

During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR]), we investigated the coupling between tension and volume during these asymmetric recoveries. Caveolae depletion and pharmacological inhibition of ion transporters and channels, mTORCs, and the cytoskeleton all affected tension and volume responses. Treatments targeting mTORC2 and specific downstream effectors caused identical changes to both tension and volume responses, their coupling remaining the same. This supports that the coupling of tension and volume responses to osmotic shocks is primarily regulated by mTORC2.


Assuntos
Tamanho Celular , Membranas/metabolismo , Osmose/fisiologia , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , Membranas/efeitos dos fármacos , Modelos Teóricos , Pressão Osmótica/fisiologia
18.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255956

RESUMO

This brief review explores the role of intracellular K+ during the transition of cells from quiescence to proliferation and the induction of apoptosis. We focus on the relationship between intracellular K+ and the growth and proliferation rates of different cells, including transformed cells in culture as well as human quiescent T cells and mesenchymal stem cells, and analyze the concomitant changes in K+ and water content in both proliferating and apoptotic cells. Evidence is discussed indicating that during the initiation of cell proliferation and apoptosis changes in the K+ content in cells occur in parallel with changes in water content and therefore do not lead to significant changes in the intracellular K+ concentration. We conclude that K+, as a dominant intracellular ion, is involved in the regulation of cell volume during the transit from quiescence, and the content of K+ and water in dividing cells is higher than in quiescent or differentiated cells, which can be considered to be a hallmark of cell proliferation and transformation.


Assuntos
Apoptose , Potássio , Humanos , Divisão Celular , Proliferação de Células , Água
19.
J Integr Plant Biol ; 66(3): 394-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329193

RESUMO

Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.


Assuntos
Estresse Fisiológico , Água , Pressão Osmótica/fisiologia , Água/metabolismo , Membrana Celular/metabolismo , Produtos Agrícolas/metabolismo , Secas
20.
Rev Physiol Biochem Pharmacol ; 181: 223-267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930879

RESUMO

Brain tumors come in many types and differ greatly in outcome. They are classified by the cell of origin (astrocytoma, ependymoma, meningioma, medulloblastoma, glioma), although more recently molecular markers are used in addition to histology. Brain tumors are graded (from I to IV) to measure their malignancy. Glioblastoma, one of the most common adult primary brain tumors, displays the highest malignancy (grade IV), and median survival of about 15 months. Main reasons for poor outcome are incomplete surgical resection, due to the highly invasive potential of glioblastoma cells, and chemoresistance that commonly develops during drug treatment. An important role in brain tumor malignancy is played by ion channels. The Ca2+-activated K+ channels of large and intermediate conductance, KCa3.1 and KCa1.1, and the volume-regulated anion channel, whose combined activity results in the extrusion of KCl and osmotic water, control cell volume, and in turn migration, invasion, and apoptotic cell death. The transient receptor potential (TRP) channels and low threshold-activated Ca (T-type) channels have equally critical role in brain tumor malignancy, as dysregulated Ca2+ signals heavily impact on glioma cell proliferation, migration, invasion. The review provides an overview of the current evidence involving these channels in brain tumor malignancy, and the application of these insights in the light of future prospects for experimental and clinical practice.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA