Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 156: 104929, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932547

RESUMO

Since the beginning of December 2019, a novel Coronavirus severe respiratory disease, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which also been termed 2019-new CoV (2019-nCoV), has continued to spread worldwide. As of August 27, 2020, a total of 24,232,429 people have been infected and 826,518 people have died. In our study, we found that astemizole can antagonize ACE2 and inhibit the entry of SARS-COV-2 spike pseudovirus into ACE2-expressed HEK293T cells (ACE2hi cells). We analysied the binding character of astemizole to ACE2 by molecular docking and surface plasmon resonance (SPR) assays and molecule docking, SARS-COV-2 spike pseudotype virus was also taken to investigate the suppression viropexis effect of astemizole. The results showed that astemizole can bind to the ACE2 receptor and inhibit the invasion of SARS-COV-2 Spike pseudoviruses. Thus astemizole represent potential drug candidates that can be re-used in anti-coronavirus therapies.


Assuntos
COVID-19 , Preparações Farmacêuticas , Astemizol/farmacologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
2.
Curr Mol Med ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289639

RESUMO

Obesity dramatically increases the risk of type 2 diabetes, fatty liver, hypertension, cardiovascular disease, and cancer, causing both declines in quality of life and life expectancy, which is a serious worldwide epidemic. At present, more and more patients with obesity are choosing drug therapy. However, given the high failure rate, high cost, and long design and testing process for discovering and developing new anti-obesity drugs, drug repurposing could be an innovative method and opportunity to broaden and improve pharmacological tools in this context. Because different diseases share molecular pathways and targets in the cells, anti-obesity drugs discovered in other fields are a viable option for treating obesity. Recently, some drugs initially developed for other diseases, such as treating diabetes, tumors, depression, alcoholism, erectile dysfunction, and Parkinson's disease, have been found to exert potential anti-obesity effects, which provides another treatment prospect. In this review, we will discuss the potential benefits and barriers associated with these drugs being used as obesity medications by focusing on their mechanisms of action when treating obesity. This could be a viable strategy for treating obesity as a significant advance in human health.

3.
Curr Med Chem ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38551048

RESUMO

AIMS: To facilitate drug discovery and development for the treatment of osteoporosis. BACKGROUND: With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis. OBJECTIVE: To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis. METHODS: Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets. RESULTS: Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM- MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable. CONCLUSION: This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

4.
Front Pharmacol ; 12: 748886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504433
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA