Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Electrocardiol ; 83: 41-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306814

RESUMO

Machine learning is poised to revolutionize medicine with algorithms that spot cardiac arrhythmia. An automated diagnostic approach can boost the efficacy of diagnosing life-threatening arrhythmia disorders in routine medical procedures. In this paper, we propose a deep learning network CLINet for ECG signal classification. Our network uses convolution, LSTM and involution layers to bring their unique advantages together. For both convolution and involution layers, we use multiple, large size kernels for multi-scale representation learning. CLINet does not require complicated pre-processing and can handle electrocardiograms of any length. Our network achieves 99.90% accuracy on the ICCAD dataset and 99.94% accuracy on the MIT-BIH dataset. With only 297 K parameters, our model can be easily embedded in smart wearable devices. The source code of CLINet is available at https://github.com/CandleLabAI/CLINet-ECG-Classification-2024.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Algoritmos , Software , Arritmias Cardíacas/diagnóstico
2.
BMC Med Inform Decis Mak ; 24(1): 94, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600479

RESUMO

Electrocardiogram (ECG) signals are very important for heart disease diagnosis. In this paper, a novel early prediction method based on Nested Long Short-Term Memory (Nested LSTM) is developed for sudden cardiac death risk detection. First, wavelet denoising and normalization techniques are utilized for reliable reconstruction of ECG signals from extreme noise conditions. Then, a nested LSTM structure is adopted, which can guide the memory forgetting and memory selection of ECG signals, so as to improve the data processing ability and prediction accuracy of ECG signals. To demonstrate the effectiveness of the proposed method, four different models with different signal prediction techniques are used for comparison. The extensive experimental results show that this method can realize an accurate prediction of the cardiac beat's starting point and track the trend of ECG signals effectively. This study holds significant value for timely intervention for patients at risk of sudden cardiac death.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Morte Súbita Cardíaca/etiologia , Algoritmos
3.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000979

RESUMO

With cardiovascular diseases (CVD) remaining a leading cause of mortality, wearable devices for monitoring cardiac activity have gained significant, renewed interest among the medical community. This paper introduces an innovative ECG monitoring system based on a single-lead ECG machine, enhanced using machine learning methods. The system only processes and analyzes ECG data, but it can also be used to predict potential heart disease at an early stage. The wearable device was built on the ADS1298 and a microcontroller STM32L151xD. A server module based on the architecture style of the REST API was designed to facilitate interaction with the web-based segment of the system. The module is responsible for receiving data in real time from the microcontroller and delivering this data to the web-based segment of the module. Algorithms for analyzing ECG signals have been developed, including band filter artifact removal, K-means clustering for signal segmentation, and PQRST analysis. Machine learning methods, such as isolation forests, have been employed for ECG anomaly detection. Moreover, a comparative analysis with various machine learning methods, including logistic regression, random forest, SVM, XGBoost, decision forest, and CNNs, was conducted to predict the incidence of cardiovascular diseases. Convoluted neural networks (CNN) showed an accuracy of 0.926, proving their high effectiveness for ECG data processing.


Assuntos
Algoritmos , Eletrocardiografia , Aprendizado de Máquina , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrocardiografia/métodos , Eletrocardiografia/instrumentação , Doenças Cardiovasculares/diagnóstico , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
4.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066042

RESUMO

The aim of this study is to address the challenge of 12-lead ECG delineation by different encoder-decoder architectures of deep neural networks (DNNs). This study compares four concepts for encoder-decoders based on a fully convolutional architecture (CED-Net) and its modifications with a recurrent layer (CED-LSTM-Net), residual connections between symmetrical encoder and decoder feature maps (CED-U-Net), and sequential residual blocks (CED-Res-Net). All DNNs transform 12-lead representative beats to three diagnostic ECG intervals (P-wave, QRS-complex, QT-interval) used for the global delineation of the representative beat (P-onset, P-offset, QRS-onset, QRS-offset, T-offset). All DNNs were trained and optimized using the large PhysioNet ECG database (PTB-XL) under identical conditions, applying an advanced approach for machine-based supervised learning with a reference algorithm for ECG delineation (ETM, Schiller AG, Baar, Switzerland). The test results indicate that all DNN architectures are equally capable of reproducing the reference delineation algorithm's measurements in the diagnostic PTB database with an average P-wave detection accuracy (96.6%) and time and duration errors: mean values (-2.6 to 2.4 ms) and standard deviations (2.9 to 11.4 ms). The validation according to the standard-based evaluation practices of diagnostic electrocardiographs with the CSE database outlines a CED-Net model, which measures P-duration (2.6 ± 11.0 ms), PQ-interval (0.9 ± 5.8 ms), QRS-duration (-2.4 ± 5.4 ms), and QT-interval (-0.7 ± 10.3 ms), which meet all standard tolerances. Noise tests with high-frequency, low-frequency, and power-line frequency noise (50/60 Hz) confirm that CED-Net, CED-Res-Net, and CED-LSTM-Net are robust to all types of noise, mostly presenting a mean duration error < 2.5 ms when compared to measurements without noise. Reduced noise immunity is observed for the U-net architecture. Comparative analysis with other published studies scores this research within the lower range of time errors, highlighting its competitive performance.


Assuntos
Algoritmos , Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Humanos , Frequência Cardíaca/fisiologia , Bases de Dados Factuais
5.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204993

RESUMO

Heart Rate Variability (HRV) refers to the capability of the heart rhythm to vary at different times, typically reflecting the regulation of the heart by the autonomic nervous system. In recent years, with advancements in Electrocardiogram (ECG) signal processing technology, HRV features reflect various aspects of cardiac activity, such as variability in heart rate, cardiac health status, and responses. We extracted key features of HRV and used them to develop and evaluate an automatic recognition model for cardiac diseases. Consequently, we proposed the HRV Heart Disease Recognition (HHDR) method, employing the Spectral Magnitude Quantification (SMQ) technique for feature extraction. Firstly, the HRV signals are extracted through electrocardiogram signal processing. Then, by analyzing parts of the HRV signal within various frequency ranges, the SMQ method extracts rich features of partial information. Finally, the Random Forest (RF) classification computational method is employed to classify the extracted information, achieving efficient and accurate cardiac disease recognition. Experimental results indicate that this method surpasses current technologies in recognizing cardiac diseases, with an average accuracy rate of 95.1% for normal/diseased classification, and an average accuracy of 84.8% in classifying five different disease categories. Thus, the proposed HHDR method effectively utilizes the local information of HRV signals for efficient and accurate cardiac disease recognition, providing strong support for cardiac disease research in the medical field.


Assuntos
Algoritmos , Eletrocardiografia , Cardiopatias , Frequência Cardíaca , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Cardiopatias/fisiopatologia , Cardiopatias/diagnóstico
6.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177564

RESUMO

Cardiac arrhythmia is a deadly disease that threatens the lives of millions of people, which shows the need for earlier detection and classification. An abnormal signal in the heart causing arrhythmia can be detected at an earlier stage when the health data from the patient are monitored using IoT technology. Arrhythmias may suddenly lead to death and the classification of arrhythmias is considered a complicated process. In this research, an effective classification model for the classification of heart disease is developed using flamingo optimization. Initially, the ECG signal from the heart is collected and then it is subjected to the preprocessing stage; to detect and control the electrical activity of the heart, the electrocardiogram (ECG) is used. The input signals collected using IoT nodes are collectively presented in the base station for the classification using flamingo-optimization-based deep convolutional networks, which effectively predict the disease. With the aid of communication technologies and the contribution of IoT, medical professionals can easily monitor the health condition of patients. The performance is analyzed in terms of accuracy, sensitivity, and specificity.


Assuntos
Arritmias Cardíacas , Redes Neurais de Computação , Humanos , Animais , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Aves , Frequência Cardíaca , Algoritmos , Processamento de Sinais Assistido por Computador
7.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420786

RESUMO

Atrial fibrillation (AF) is an arrhythmic cardiac disorder with a high and increasing prevalence in aging societies, which is associated with a risk for stroke and heart failure. However, early detection of onset AF can become cumbersome since it often manifests in an asymptomatic and paroxysmal nature, also known as silent AF. Large-scale screenings can help identifying silent AF and allow for early treatment to prevent more severe implications. In this work, we present a machine learning-based algorithm for assessing signal quality of hand-held diagnostic ECG devices to prevent misclassification due to insufficient signal quality. A large-scale community pharmacy-based screening study was conducted on 7295 older subjects to investigate the performance of a single-lead ECG device to detect silent AF. Classification (normal sinus rhythm or AF) of the ECG recordings was initially performed automatically by an internal on-chip algorithm. The signal quality of each recording was assessed by clinical experts and used as a reference for the training process. Signal processing stages were explicitly adapted to the individual electrode characteristics of the ECG device since its recordings differ from conventional ECG tracings. With respect to the clinical expert ratings, the artificial intelligence-based signal quality assessment (AISQA) index yielded strong correlation of 0.75 during validation and high correlation of 0.60 during testing. Our results suggest that large-scale screenings of older subjects would greatly benefit from an automated signal quality assessment to repeat measurements if applicable, suggest additional human overread and reduce automated misclassifications.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/diagnóstico , Inteligência Artificial , Eletrocardiografia/métodos , Algoritmos
8.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896480

RESUMO

A variety of technologies that could enhance driving safety are being actively explored, with the aim of reducing traffic accidents by accurately recognizing the driver's state. In this field, three mainstream detection methods have been widely applied, namely visual monitoring, physiological indicator monitoring and vehicle behavior analysis. In order to achieve more accurate driver state recognition, we adopted a multi-sensor fusion approach. We monitored driver physiological signals, electroencephalogram (EEG) signals and electrocardiogram (ECG) signals to determine fatigue state, while an in-vehicle camera observed driver behavior and provided more information for driver state assessment. In addition, an outside camera was used to monitor vehicle position to determine whether there were any driving deviations due to distraction or fatigue. After a series of experimental validations, our research results showed that our multi-sensor approach exhibited good performance for driver state recognition. This study could provide a solid foundation and development direction for future in-depth driver state recognition research, which is expected to further improve road safety.


Assuntos
Condução de Veículo , Humanos , Retroalimentação , Acidentes de Trânsito/prevenção & controle , Fadiga/diagnóstico , Eletroencefalografia , Eletrocardiografia
9.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300009

RESUMO

The wireless capture of analog differential signals from fully passive (battery-less) sensors is technically challenging but it can allow for the seamless capture of differential biosignals such as an electrocardiogram (ECG). This paper presents a novel design for the wireless capture of analog differential signals using a novel conjugate coil pair for a wireless resistive analog passive (WRAP) ECG sensor. Furthermore, we integrate this sensor with a new type of dry electrode, namely conductive polymer polypyrrole (PPy)-coated patterned vertical carbon nanotube (pvCNT) electrodes. The proposed circuit uses dual-gate depletion-mode MOSFETs to convert the differential biopotential signals to correlated drain-source resistance changes and the conjugate coil wirelessly transmits the differences of the two input signals. The circuit rejects (17.24 dB) common mode signals and passing only differential signals. We have integrated this novel design with our previously reported PPy-coated pvCNT dry ECG electrodes, fabricated on a stainless steel substrate with a diameter of 10 mm, which provided a zero-power (battery-less) ECG capture system for long duration monitoring. The scanner transmits an RF carrier signal at 8.37 MHz. The proposed ECG WRAP sensor uses only two complementary biopotential amplifier circuits, each of which has a single-depletion MOSFET. The amplitude-modulated RF signal is envelope-detected, filtered, amplified, and transmitted to a computer for signal processing. ECG signals are collected using this WRAP sensor and compared with a commercial counterpart. Due to the battery-less nature of the ECG WRAP sensor, it has the potential to be a body-worn electronic circuit patch with dry pvCNT electrodes that stably operate for a long period of time.


Assuntos
Nanotubos de Carbono , Polímeros , Pirróis , Eletrocardiografia , Eletrodos
10.
Entropy (Basel) ; 25(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37761563

RESUMO

The electrocardiogram (ECG) is a crucial tool for assessing cardiac health in humans. Aiming to enhance the accuracy of ECG signal classification, a novel approach is proposed based on relative position matrix and deep learning network information features for the classification task in this paper. The approach improves the feature extraction capability and classification accuracy via techniques of image conversion and attention mechanism. In terms of the recognition strategy, this paper presents an image conversion using relative position matrix information. This information is utilized to describe the relative spatial relationships between different waveforms, and the image identification is successfully applied to the Gam-Resnet18 deep learning network model with a transfer learning concept for classification. Ultimately, this model achieved a total accuracy of 99.30%, an average positive prediction rate of 98.76%, a sensitivity of 98.90%, and a specificity of 99.84% with the relative position matrix approach. To evaluate the effectiveness of the proposed method, different image conversion techniques are compared on the test set. The experimental results demonstrate that the relative position matrix information can better reflect the differences between various types of arrhythmias, thereby improving the accuracy and stability of classification.

11.
Entropy (Basel) ; 25(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238530

RESUMO

ECG signal processing is an important basis for the prevention and diagnosis of cardiovascular diseases; however, the signal is susceptible to noise interference mixed with equipment, environmental influences, and transmission processes. In this paper, an efficient denoising method based on the variational modal decomposition (VMD) algorithm combined with and optimized by the sparrow search algorithm (SSA) and singular value decomposition (SVD) algorithm, named VMD-SSA-SVD, is proposed for the first time and applied to the noise reduction of ECG signals. SSA is used to find the optimal combination of parameters of VMD [K,α], VMD-SSA decomposes the signal to obtain finite modal components, and the components containing baseline drift are eliminated by the mean value criterion. Then, the effective modalities are obtained in the remaining components using the mutual relation number method, and each effective modal is processed by SVD noise reduction and reconstructed separately to finally obtain a clean ECG signal. In order to verify the effectiveness, the methods proposed are compared and analyzed with wavelet packet decomposition, empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm. The results show that the noise reduction effect of the VMD-SSA-SVD algorithm proposed is the most significant, and that it can suppress the noise and remove the baseline drift interference at the same time, and effectively retain the morphological characteristics of the ECG signals.

12.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897976

RESUMO

Conductive gel needs to be applied between the skin and standard medical electrodes when monitoring electrocardiogram (ECG) signals, but this can cause skin irritation, particularly during long-term monitoring. Fabric electrodes are flexible, breathable, and capable of sensing ECG signals without conductive gel. The objective of this study was to design and fabricate a circular fabric electrode using weaving technology. To optimize the woven fabric electrode, electrodes of different diameter, fabric weave, and weft density were devised, and the AC impedance, open-circuit voltage, and static ECG signal were measured and comprehensively evaluated. Diameter of 4 cm, 12/5 sateen, and weft density of 46 picks/cm were concluded as the appropriate parameters of the fabric electrode. ECG signals in swinging, squatting, and rotating states were compared between the woven fabric electrode and the standard medical electrode. The results showed that the characteristic waveform of the woven fabric electrode with 86.7% improved data was more obvious than that of the standard medical electrode. This work provides reference data that will be helpful for commercializing the integration of fabric electrodes into smart textiles.


Assuntos
Eletrocardiografia , Têxteis , Condutividade Elétrica , Impedância Elétrica , Eletrodos
13.
Sensors (Basel) ; 22(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591226

RESUMO

The essential factor that enables medical patient monitoring is the vital signs monitor, whereas the key in communication with the monitor is the user interface. The way the data display on the monitors is standard, and it is often not changed; however, vital signs monitors are now configurable. Not all the data have to be displayed concurrently; not all data are necessary at a given moment. There arises a question: is the standard monitor configuration sufficient, or can it lead to mistakes related to delays in perceiving parameter changes? Some researchers argue that mistakes in life-saving activities is not mainly due to medical mistakes but due to poorly designed patient life monitor interfaces, among other reasons. In addition, it should be emphasized that the activity that saves the patient's life is accompanied by stress, which is often caused by the chaos occurring in the hospital emergency department. This raises the following question: is the standard user interface, which they are used to, still effective under stress conditions? Therefore, our primary consideration is the measure of reaction speed of medical staff, which means the perception of the changes of vital signs on the patient's monitor, for stress and stressless situations. The paper attempts to test the thesis of the importance of the medical interface and its relation to medical mistakes, extending it with knowledge about the difference in speed of making decisions by the medical staff with regard to the stress stimulus.


Assuntos
Erros Médicos , Sinais Vitais , Humanos , Monitorização Fisiológica
14.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808386

RESUMO

(1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have recently been used in diabetes detection, blood glucose estimation and diabetes-related complication detection. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (2) Method: We performed a systematic review based on articles that focus on the use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the topic, such as "Diabetes", "ECG", "PPG", "Machine Learning", etc. This was performed using databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (3) Results: A total of 78 studies were included. The majority of the selected studies focused on blood glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications detection. We present these studies by approach: traditional, machine learning and deep learning approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising. Clinical validation and data processing standardization need to be improved in order to employ these techniques in a clinical environment.


Assuntos
Diabetes Mellitus , Fotopletismografia , Algoritmos , Glicemia/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Eletrocardiografia , Humanos , Fotopletismografia/métodos
15.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632114

RESUMO

Fetal electrocardiograms (FECGs) provide important clinical information for early diagnosis and intervention. However, FECG signals are extremely weak and are greatly influenced by noises. FECG signal extraction and detection are still challenging. In this work, we combined the fast independent component analysis (FastICA) algorithm with singular value decomposition (SVD) to extract FECG signals. The improved wavelet mode maximum method was applied to detect QRS waves and ST segments of FECG signals. We used the abdominal and direct fetal ECG database (ADFECGDB) and the Cardiology Challenge Database (PhysioNet2013) to verify the proposed algorithm. The signal-to-noise ratio of the best channel signal reached 45.028 dB and the issue of missing waveforms was addressed. The sensitivity, positive predictive value and F1 score of fetal QRS wave detection were 96.90%, 98.23%, and 95.24%, respectively. The proposed algorithm may be used as a new method for FECG signal extraction and detection.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Eletrocardiografia/métodos , Feto , Humanos , Razão Sinal-Ruído
16.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808451

RESUMO

Health monitoring and related technologies are a rapidly growing area of research. To date, the electrocardiogram (ECG) remains a popular measurement tool in the evaluation and diagnosis of heart disease. The number of solutions involving ECG signal monitoring systems is growing exponentially in the literature. In this article, underestimated Orthogonal Matching Pursuit (OMP) algorithms are used, demonstrating the significant effect of concise representation parameters on improving the performance of the classification process. Cardiovascular disease classification models based on classical Machine Learning classifiers were defined and investigated. The study was undertaken on the recently published PTB-XL database, whose ECG signals were previously subjected to detailed analysis. The classification was realized for class 2, class 5, and class 15 cardiac diseases. A new method of detecting R-waves and, based on them, determining the location of QRS complexes was presented. Novel aggregation methods of ECG signal fragments containing QRS segments, necessary for tests for classical classifiers, were developed. As a result, it was proved that ECG signal subjected to algorithms of R wave detection, QRS complexes extraction, and resampling performs very well in classification using Decision Trees. The reason can be found in structuring the signal due to the actions mentioned above. The implementation of classification issues achieved the highest Accuracy of 90.4% in recognition of 2 classes, as compared to less than 78% for 5 classes and 71% for 15 classes.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas/diagnóstico , Eletrocardiografia/métodos , Humanos , Aprendizado de Máquina
17.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161650

RESUMO

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas , Humanos , Redes Neurais de Computação
18.
Entropy (Basel) ; 24(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893004

RESUMO

In practical electrocardiogram (ECG) monitoring, there are some challenges in reducing the data burden and energy costs. Therefore, compressed sensing (CS) which can conduct under-sampling and reconstruction at the same time is adopted in the ECG monitoring application. Recently, deep learning used in CS methods improves the reconstruction performance significantly and can removes of some of the constraints in traditional CS. In this paper, we propose a deep compressive-sensing scheme for ECG signals, based on modified-Inception block and long short-term memory (LSTM). The framework is comprised of four modules: preprocessing; compression; initial; and final reconstruction. We adaptively compressed the normalized ECG signals, sequentially using three convolutional layers, and reconstructed the signals with a modified Inception block and LSTM. We conducted our experiments on the MIT-BIH Arrhythmia Database and Non-Invasive Fetal ECG Arrhythmia Database to validate the robustness of our model, adopting Signal-to-Noise Ratio (SNR) and percentage Root-mean-square Difference (PRD) as the evaluation metrics. The PRD of our scheme was the lowest and the SNR was the highest at all of the sensing rates in our experiments on both of the databases, and when the sensing rate was higher than 0.5, the PRD was lower than 2%, showing significant improvement in reconstruction performance compared to the comparative methods. Our method also showed good recovering quality in the noisy data.

19.
BMC Med Inform Decis Mak ; 21(1): 184, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107920

RESUMO

BACKGROUND: Heart disease diagnosis is a challenging task and it is important to explore useful information from the massive amount of electrocardiogram (ECG) records of patients. The high-precision diagnostic identification of ECG can save clinicians and cardiologists considerable time while helping reduce the possibility of misdiagnosis at the same time.Currently, some deep learning-based methods can effectively perform feature selection and classification prediction, reducing the consumption of manpower. METHODS: In this work, an end-to-end deep learning framework based on convolutional neural network (CNN) is proposed for ECG signal processing and arrhythmia classification. In the framework, a transformer network is embedded in CNN to capture the temporal information of ECG signals and a new link constraint is introduced to the loss function to enhance the classification ability of the embedding vector. RESULTS: To evaluate the proposed method, extensive experiments based on real-world data were conducted. Experimental results show that the proposed model achieve better performance than most baselines. The experiment results also proved that the transformer network pays more attention to the temporal continuity of the data and captures the hidden deep features of the data well. The link constraint strengthens the constraint on the embedded features and effectively suppresses the effect of data imbalance on the results. CONCLUSIONS: In this paper, an end-to-end model is used to process ECG signal and classify arrhythmia. The model combine CNN and Transformer network to extract temporal information in ECG signal and is capable of performing arrhythmia classification with acceptable accuracy. The model can help cardiologists perform assisted diagnosis of heart disease and improve the efficiency of healthcare delivery.


Assuntos
Algoritmos , Eletrocardiografia , Arritmias Cardíacas/diagnóstico , Humanos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
20.
Sensors (Basel) ; 21(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450866

RESUMO

Sleep Apnea is a breathing disorder occurring during sleep. Older people suffer most from this disease. In-time diagnosis of apnea is needed which can be observed by the application of a proper health monitoring system. In this work, we focus on Obstructive Sleep Apnea (OSA) detection from the Electrocardiogram (ECG) signals obtained through the body sensors. Our work mainly consists of an experimental study of different ensemble techniques applied on three deep learning models-two Convolutional Neural Network (CNN) based models, and a combination of CNN and Long Short-Term Memory (LSTM) models, which were previously proposed in the OSA detection domain. We have chosen four ensemble techniques-majority voting, sum rule and Choquet integral based fuzzy fusion and trainable ensemble using Multi-Layer Perceptron (MLP) for our case study. All the experiments are conducted on the benchmark PhysioNet Apnea-ECG Database. Finally, we have achieved highest OSA detection accuracy of 85.58% using the MLP based ensemble approach. Our best result is also able to surpass many of state-of-the-art methods.


Assuntos
Aprendizado Profundo , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Idoso , Eletrocardiografia , Humanos , Redes Neurais de Computação , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA