Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(10): 601, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36057891

RESUMO

The growth of Phytophthora capsica, Rhizoctonia solani, Fusarium graminearum, Fusarium oxysporum and Botrytis cinerea were all inhibited by the fermentation supernatant of Bacillus licheniformis TG116, a biocontrol strain isolated from Typhonium giganteum Engl. previously with broad-spectrum resistance to plant pathogens. The fermentation supernatant of the TG116 has a great stability on temperature and UV, and shows the biological activity of protease and cellulase. The antifungal protease produced by B. licheniformis TG116 was purified to homogeneity by ammonium sulfate precipitation, DEAE Sepharose Fast Flow column chromatography and Sephadex G-50 column chromatography. The inhibition of protease by the three surfactants increased with increasing concentration inhibition. Among these surfactants, EDTA showed the strongest inhibition, with only 25% protein activity at a concentration of 1.1 mmol·L-1. Gene amplification verified the presence of a gene fragment of serine protease in the strain TG116. The antimicrobial substance isolated from the fermentation broth of TG116 is a serine protease component.


Assuntos
Bacillus licheniformis , Phytophthora , Antifúngicos , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Serina Proteases/genética , Tensoativos/farmacologia
2.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433337

RESUMO

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Fermentação , Cristalização , Anaerobiose , Esgotos , Fosfatos , Compostos Ferrosos
3.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745984

RESUMO

Nutritional food supplements and pharmaceutical products produced with vitamin K2 as raw materials a very promising market in the global scope. The main production method of vitamin K2 is microbial fermentation, but approximately 50% of vitamin K2 synthesized by the main production strain Bacillus subtilis natto exists in extracellular form, which is not easy to separate and extract. In order to solve this problem, in this study, we synthesized a novel cellulose flocculant, MCC-g-LMA, by grafting reaction using microcrystalline cellulose (MCC) and lauryl methacrylate (LMA) as monomers, and ammonium persulfate as an initiator to flocculate VK2 from the fermentation supernatant. The flocculant was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis, and scanning electron microscopy (SEM), and the grafting reaction was successful. When the flocculant dosage was 48.0 mg/L and pH was 5.0, the flocculation rate of the MCC-g-LMA on the fermentation supernatant reached 85.3%, and the enrichment rate of VK2 reached 90.0%. Furthermore, we explored the flocculation mechanism of VK2 by the MCC-g-LMA and speculated that the flocculation mechanism mainly included adsorption bridging, hydrophobic association and net trapping and sweep effect. In this study, the extraction method for trace high-value biological products in the fermentation supernatant was improved, which provided a method and theoretical basis for the efficient separation and purification of VK2 and other terpenoids.

4.
Front Microbiol ; 13: 824189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308368

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) plays significant roles in enhancing human health and preventing human diseases. The heterotrophic marine dinoflagellate Crypthecodinium cohnii is a good candidate to produce high-quality DHA. To overcome the inhibition caused by the fermentation supernatant in the late fermentation stage of DHA-producing C. cohnii, fermentation supernatant-based adaptive laboratory evolution (FS-ALE) was conducted. The cell growth and DHA productivity of the evolved strain (FS280) obtained after 280 adaptive cycles corresponding to 840 days of evolution were increased by 161.87 and 311.23%, respectively, at 72 h under stress conditions and increased by 19.87 and 51.79% without any stress compared with the starting strain, demonstrating the effectiveness of FS-ALE. In addition, a comparative proteomic analysis identified 11,106 proteins and 910 differentially expressed proteins, including six stress-responsive proteins, as well as the up- and downregulated pathways in FS280 that might contribute to its improved cell growth and DHA accumulation. Our study demonstrated that FS-ALE could be a valuable solution to relieve the inhibition of the fermentation supernatant at the late stage of normal fermentation of heterotrophic microalgae.

5.
AMB Express ; 7(1): 99, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28532121

RESUMO

BACKGROUND: To test the antimicrobial activity of different extracts and fermentation broth from puffball(Bovistella radicata), the different extracts and fermentation broth of puffball were prepared, the active fraction was investigated by UPLC-UV-MS and semi-preparative chromatograph. RESULTS: Through zones of inhibition (ZOI) and minimum inhibitory concentrations (MIC) tests, the supernatant of fermentation possessed best antimicrobial activity in all extracts whose MIC value is 31.2 µg/ml against T. rubrum, T. mentagrophytes, S. aureus and P. aeruginosa. And ZOI value is 29.01, 21.02, 35.02, 28.01 mm against T. rubrum, T. mentagrophytes, S. aureus and P. aeruginosa. Then we compare the puffball fermentation supernatant with blank contrast by LC-MS. There are the characteristic peaks named PBR-1 and PBR-2 with the puffball fermentation supernatant, the separation of compound PBR-1 and PBR-2 was done on semi-preparative C18 column and the MIC and ZOI of compound PBR-1 and PBR-2 are 15.6 µg/ml and 34 mm with the antifungal test. CONCLUSIONS: The fermentation supernatant and compound PBR-1 and PBR-2 have promising antifungal activity against T. rubrum and T. mentagrophytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA