Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.616
Filtrar
1.
Annu Rev Biochem ; 90: 605-630, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503381

RESUMO

The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Apolipoproteínas/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colágeno/metabolismo , Evolução Molecular , Humanos , Mucinas/metabolismo , Família Multigênica , Transporte Proteico , Proteínas/química
2.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153214

RESUMO

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Assuntos
Colesterol/biossíntese , Degradação Associada com o Retículo Endoplasmático/fisiologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Animais , Dimetilaliltranstransferase/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Camundongos , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional , Esteróis/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia , Ubiquitinação
3.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
4.
Cell ; 184(14): 3689-3701.e22, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139175

RESUMO

The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Galinhas , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
5.
Cell ; 184(26): 6299-6312.e22, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34861190

RESUMO

The NACHT-, leucine-rich-repeat- (LRR), and pyrin domain-containing protein 3 (NLRP3) is emerging to be a critical intracellular inflammasome sensor of membrane integrity and a highly important clinical target against chronic inflammation. Here, we report that an endogenous, stimulus-responsive form of full-length mouse NLRP3 is a 12- to 16-mer double-ring cage held together by LRR-LRR interactions with the pyrin domains shielded within the assembly to avoid premature activation. Surprisingly, this NLRP3 form is predominantly membrane localized, which is consistent with previously noted localization of NLRP3 at various membrane organelles. Structure-guided mutagenesis reveals that trans-Golgi network dispersion into vesicles, an early event observed for many NLRP3-activating stimuli, requires the double-ring cages of NLRP3. Double-ring-defective NLRP3 mutants abolish inflammasome punctum formation, caspase-1 processing, and cell death. Thus, our data uncover a physiological NLRP3 oligomer on the membrane that is poised to sense diverse signals to induce inflammasome activation.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Quinases Relacionadas a NIMA/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/isolamento & purificação , Proteína 3 que Contém Domínio de Pirina da Família NLR/ultraestrutura , Nigericina/farmacologia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Rede trans-Golgi/metabolismo
6.
Cell ; 184(9): 2412-2429.e16, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33852913

RESUMO

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Biológico Ativo , Células HeLa , Humanos , Transporte Proteico
7.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32272059

RESUMO

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Assuntos
Sistemas de Translocação de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Sinais Direcionadores de Proteínas , Sistemas de Translocação de Proteínas/fisiologia , Transporte Proteico/fisiologia , Proteínas/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/fisiologia
8.
Cell ; 179(1): 132-146.e14, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522887

RESUMO

Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Proteínas de Transporte/genética , Sistema Livre de Células/metabolismo , Células Cultivadas , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Centro Organizador dos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
9.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
10.
Annu Rev Biochem ; 87: 783-807, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841344

RESUMO

Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteólise , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
11.
Annu Rev Cell Dev Biol ; 35: 543-566, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283381

RESUMO

Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.


Assuntos
Complexo de Golgi/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/fisiologia , Animais , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
12.
Cell ; 170(5): 939-955.e24, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803726

RESUMO

To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.


Assuntos
Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Animais , Linhagem Celular , Drosophila , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo
13.
Annu Rev Cell Dev Biol ; 33: 51-75, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28645217

RESUMO

The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Animais , Divisão Celular , Centrossomo/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Biológicos , Membrana Nuclear/metabolismo
14.
Annu Rev Cell Dev Biol ; 32: 197-222, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298089

RESUMO

Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.


Assuntos
Via Secretória , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Degradação Associada com o Retículo Endoplasmático , Humanos , Transporte Proteico , Vesículas Transportadoras/metabolismo
15.
Annu Rev Cell Dev Biol ; 32: 373-397, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27146312

RESUMO

Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.


Assuntos
Bactérias/metabolismo , Células/microbiologia , Citoesqueleto de Actina/metabolismo , Animais , Autofagia , Células/patologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade
16.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34245671

RESUMO

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Assuntos
Proteínas da Matriz do Complexo de Golgi/genética , Proteoma/genética , Proteômica , Estresse Fisiológico/genética , Matriz Extracelular/genética , Complexo de Golgi/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Transdução de Sinais/genética
17.
EMBO J ; 43(14): 2954-2978, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822137

RESUMO

The degradation of organelles by autophagy is essential for cellular homeostasis. The Golgi apparatus has recently been demonstrated to be degraded by autophagy, but little is known about how the Golgi is recognized by the forming autophagosome. Using quantitative proteomic analysis and two novel Golgiphagy reporter systems, we found that the five-pass transmembrane Golgi-resident proteins YIPF3 and YIPF4 constitute a Golgiphagy receptor. The interaction of this complex with LC3B, GABARAP, and GABARAPL1 is dependent on a LIR motif within YIPF3 and putative phosphorylation sites immediately upstream; the stability of the complex is governed by YIPF4. Expression of a YIPF3 protein containing a mutated LIR motif caused an elongated Golgi morphology, indicating the importance of Golgi turnover via selective autophagy. The reporter assays reported here may be readily adapted to different experimental contexts to help deepen our understanding of Golgiphagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Autofagia , Complexo de Golgi , Proteínas Associadas aos Microtúbulos , Complexo de Golgi/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células HeLa , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteômica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética
18.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
19.
Trends Biochem Sci ; 48(4): 331-344, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36336552

RESUMO

The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1ß (IL-1ß) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1ß via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1ß secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Caspase 1/metabolismo , Expressão Gênica , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
20.
Trends Genet ; 40(1): 20-23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926636

RESUMO

Proprioception - the sense of body position in space - is intimately linked to motor control. Here, we briefly review the current knowledge of the proprioceptive system and how advances in the genetic characterisation of proprioceptive sensory neurons in mice promise to dissect its role in health and disease.


Assuntos
Propriocepção , Células Receptoras Sensoriais , Camundongos , Animais , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA