RESUMO
OBJECTIVE: The semiology of cingulate gyrus epilepsy is varied and may involve the paracentral area, the adjacent limbic system, and/or the orbitofrontal gyrus. Invasive electroencephalography (iEEG) recording is usually required for patients with deeply located epileptogenic foci. This paper reports on the authors' experiences in the diagnosis and surgical treatment of patients with focal epilepsy originating in the cingulate gyrus. METHODS: Eighteen patients (median age 24 years, range 5-53 years) with a mean seizure history of 23 years (range 2-32 years) were analyzed retrospectively. The results of presurgical evaluation, surgical strategy, and postoperative pathology are reported, as well as follow-up concerning functional morbidity and seizures (median follow-up 7 years, range 2-12 years). RESULTS: Patients with cingulate gyrus epilepsy presented with a variety of semiologies and scalp EEG patterns. Prior to ictal onset, 11 (61%) of the patients presented with aura. Initial ictal symptoms included limb posturing in 12 (67%), vocalization in 5, and hypermotor movement in 4. In most patients (n = 16, 89%), ictal EEG presented as widespread patterns with bilateral hemispheric origin, as well as muscle artifacts obscuring the onset of EEG during the ictal period in 11 patients. Among the 18 patients who underwent resection, the pathology revealed mild malformation of cortical development in 2, focal cortical dysplasia (FCD) Ib in 4, FCD IIa in 4, FCD IIb in 4, astrocytoma in 1, ganglioglioma in 1, and gliosis in 2. The seizure outcome after surgery was satisfactory: Engel class IA in 12 patients, IIB in 3, IIIA in 1, IIIB in 1, and IVB in 1 at the 2-year follow-up. CONCLUSIONS: In this study, the authors exploited the improved access to the cingulate epileptogenic network made possible by the use of 3D electrodes implanted using stereoelectroencephalography methodology. Under iEEG recording and intraoperative neuromonitoring, epilepsy surgery on lesions in the cingulate gyrus can result in good outcomes in terms of seizure recurrence and the incidence of postoperative permanent deficits.
Assuntos
Eletroencefalografia , Epilepsias Parciais/cirurgia , Epilepsia/cirurgia , Giro do Cíngulo/cirurgia , Malformações do Desenvolvimento Cortical/cirurgia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados/efeitos adversos , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Convulsões/etiologia , Convulsões/fisiopatologia , Convulsões/cirurgia , Adulto JovemRESUMO
OBJECTIVEElectrocorticography is an indispensable tool in identifying the epileptogenic zone in the presurgical evaluation of many epilepsy patients. Traditional electrocorticographic features (spikes, ictal onset changes, and recently high-frequency oscillations [HFOs]) rely on the presence of transient features that occur within or near epileptogenic cortex. Here the authors report on a novel corticography feature of epileptogenic cortex-covariation of high-gamma and beta frequency band power profiles. Band-limited power was measured from each recording site based on native physiological signal differences without relying on clinical ictal or interictal epileptogenic features. In this preliminary analysis, frequency windowed power correlation appears to be a specific marker of the epileptogenic zone. The authors' overall aim was to validate this observation with the location of the eventual resection and outcome.METHODSThe authors conducted a retrospective analysis of 13 adult patients who had undergone electrocorticography for surgical planning at their center. They quantified the correlation of high-gamma (70-200 Hz) and beta (12-18 Hz) band frequency power per electrode site during a cognitive task. They used a sliding window method to correlate the power of smoothed, Hilbert-transformed high-gamma and beta bands. They then compared positive and negative correlations between power in the high-gamma and beta bands in the setting of a hand versus a tongue motor task as well as within the resting state. Significant positive correlations were compared to surgically resected areas and outcomes based on reviewed records.RESULTSPositive high-gamma and beta correlations appeared to predict the area of eventual resection and, preliminarily, surgical outcome independent of spike detection. In general, patients with the best outcomes had well-localized positive correlations (high-gamma and beta activities) to areas of eventual resection, while those with poorer outcomes displayed more diffuse patterns.CONCLUSIONSData in this study suggest that positive high-gamma and beta correlations independent of any behavioral metric may have clinical applicability in surgical decision-making. Further studies are needed to evaluate the clinical potential of this methodology. Additional work is also needed to relate these results to other methods, such as HFO detection or connectivity with other cortical areas.
RESUMO
OBJECTIVEIn this study, the authors investigated high-frequency oscillation (HFO) networks during seizures in order to determine how HFOs spread from the focal cerebral cortex and become synchronized across various areas of the brain.METHODSAll data were obtained from stereoelectroencephalography (SEEG) signals in patients with drug-resistant temporal lobe epilepsy (TLE). The authors calculated intercontact cross-coefficients between all pairs of contacts to construct HFO networks in 20 seizures that occurred in 5 patients. They then calculated HFO network topology metrics (i.e., network density and component size) after normalizing seizure duration data by dividing each seizure into 10 intervals of equal length (labeled I1-I10).RESULTSFrom the perspective of the dynamic topologies of cortical and subcortical HFO networks, the authors observed a significant increase in network density during intervals I5-I10. A significant increase was also observed in overall energy during intervals I3-I8. The results of subnetwork analysis revealed that the number of components continuously decreased following the onset of seizures, and those results were statistically significant during intervals I3-I10. Furthermore, the majority of nodes were connected to a single dominant component during the propagation of seizures, and the percentage of nodes within the largest component grew significantly until seizure termination.CONCLUSIONSThe consistent topological changes that the authors observed suggest that TLE is affected by common epileptogenic patterns. Indeed, the findings help to elucidate the epileptogenic network that characterizes TLE, which may be of interest to researchers and physicians working to improve treatment modalities for epilepsy, including resection, cortical stimulation, and neuromodulation treatments that are responsive to network topologies.
RESUMO
OBJECTIVE Epilepsy surgery is of known benefit for drug-resistant temporal lobe epilepsy (TLE); however, a certain number of patients suffer significant decline in verbal memory after hippocampectomy. To prevent this disabling complication, a reliable test for predicting postoperative memory decline is greatly desired. Therefore, the authors assessed the value of electrical stimulation of the parahippocampal gyrus (PHG) as a provocation test of verbal memory decline after hippocampectomy on the dominant side. METHODS Eleven right-handed, Japanese-speaking patients with medically intractable left TLE participated in the study. Before surgery, they underwent provocative testing via electrical stimulation of the left PHG during a verbal encoding task. Their pre- and posthippocampectomy memory function was evaluated according to the Wechsler Memory Scale-Revised (WMS-R) and/or Mini-Mental State Examination (MMSE) before and 6 months after surgery. The relationship between postsurgical memory decline and results of the provocative test was evaluated. RESULTS Left hippocampectomy was performed in 7 of the 11 patients. In 3 patients with a positive provocative recognition test, verbal memory function, as assessed by the WMS-R, decreased after hippocampectomy, whereas in 4 patients with a negative provocative recognition test, verbal memory function, as assessed by the WMS-R or MMSE, was preserved. CONCLUSIONS Results of the present study suggest that electrical stimulation of the PHG is a reliable provocative test to predict posthippocampectomy verbal memory decline.