Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 17(1): 105, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438969

RESUMO

BACKGROUND: Breast cancer is a life-threatening disease in females and the leading cause of mortality among the female population, presenting huge challenges for prognosis and treatment. ITM2A is a member of the BRICHOS superfamily, which are thought to have a chaperone function. ITM2A has been identified to related to ovarian cancer progress recently. However, the biological role of ITM2A in breast cancer remains largely unclear. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting assay and immunohistochemistry staining were used to analyzed the expression level of ITM2A. The patient overall survival versus ITM2A expression level was evaluated by Kaplan-Meier analysis. MTT assay, EdU incorporation assay and colony formation assay were used to evaluated the role of ITM2A on breast cancer cell proliferation. Autophagy was explored through autophagic flux detection using a confocal microscope and autophagic vacuoles investigation under a transmission electron microscopy (TEM). In vitro kinase assay was used to investigated the phosphorylation modification of ITM2A by HUNK. RESULTS: Our data showed that the expression of integral membrane protein 2A (ITM2A) was significantly down-regulated in human breast cancer tissues and cell lines. Kaplan-Meier analysis indicated that patients presenting with reduced ITM2A expression exhibited poor overall survival, and expression significantly correlated with age, progesterone receptor status, TNM classification and tumor stage. ITM2A overexpression significantly inhibited the proliferation of breast cancer cells. By studying several autophagic markers and events in human breast cancer SKBR-3 cells, we further demonstrated that ITM2A is a novel positive regulator of autophagy through an mTOR-dependent manner. Moreover, we found that ITM2A was phosphorylated at T35 by HUNK, a serine/threonine kinase significantly correlated with human breast cancer overall survival and HER2-induced mammary tumorigenesis. CONCLUSION: Our study provided evidence that ITM2A functions as a novel prognostic marker and represents a potential therapeutic target.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752345

RESUMO

BACKGROUND: Autophagy is a catabolic cellular recycling pathway that is essential for maintaining intracellular homeostasis. Autophagosome formation is achieved via the coordination of the Beclin-1 protein complex. Rubicon is a Beclin-1 associated protein that suppresses autophagy by impairing the activity of the class III PI3K, Vps34. However, very little is known about the molecular mechanisms that regulate Rubicon function. METHODS: In this study, co-immunoprecipitation and kinase assays were used to investigate the ability of Hormonally Upregulated Neu-associated Kinase (HUNK) to bind to and phosphorylate Rubicon. LC3B was monitored by immunofluorescence and immunoblotting to determine whether phosphorylation of Rubicon by HUNK controls the autophagy suppressive function of Rubicon. RESULTS: Findings from this study identify Rubicon as a novel substrate of HUNK and show that phosphorylation of Rubicon inhibits its function, promoting autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fagossomos/metabolismo
3.
Pharmacol Res ; 119: 188-194, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28189783

RESUMO

Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2+/ErbB2+) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2+/ErbB2+ breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2+/ErbB2+ breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/metabolismo , Mama/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Terapia de Alvo Molecular/métodos , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Proteínas Serina-Treonina Quinases/análise , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo
4.
Eur J Endocrinol ; 190(3): K27-K31, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430550

RESUMO

BACKGROUND: Osteoporosis (OP) is a pathology characterized by bone fragility affecting 30% of postmenopausal women, mainly due to estrogen deprivation and increased oxidative stress. An autophagy involvement is suspected in OP pathogenesis but a definitive proof in humans remains to be obtained. METHODS: Postmenopausal women hospitalized for femoral neck fracture (OP group) or total hip replacement (Control group) were enrolled using very strict exclusion criteria. Western blot was used to analyze autophagy level. RESULTS: The protein expression level of the autophagosome marker LC3-II was significantly decreased in bone of OP patients relative to the control group. In addition, the protein expression of the hormonally upregulated neu-associated kinase (HUNK), which is upregulated by female hormones and promotes autophagy, was also significantly reduced in bone of the OP group. CONCLUSIONS: These results demonstrate for the first time that postmenopausal OP patients have a deficit in bone autophagy level and suggest that HUNK could be the factor linking estrogen loss and autophagy decline. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT03175874, 2/6/2017.


Assuntos
Fraturas do Quadril , Osteoporose , Humanos , Feminino , Densidade Óssea , Fraturas do Quadril/patologia , Osteoporose/metabolismo , Autofagia , Estrogênios
5.
Cell Chem Biol ; 31(5): 989-999.e7, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38307028

RESUMO

Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Receptor ErbB-2 , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Relação Estrutura-Atividade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Relacionadas à Autofagia/efeitos dos fármacos
6.
Oncoimmunology ; 13(1): 2364382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846083

RESUMO

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.


Assuntos
Interleucina-4 , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Feminino , Animais , Camundongos , Interleucina-4/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética
7.
Biomedicines ; 10(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36551828

RESUMO

Hormonally upregulated neu-associated kinase (HUNK) is a serine/threonine (S/T) protein kinase related to the adenosine monophosphate-activated protein kinase (AMPK) family of kinases. HUNK was originally discovered using a screen to identify kinases expressed in the mouse mammary gland. Therefore, the majority of studies to date have been carried out in models specific to this tissue, and the kinase was named to reflect its mammary gland-specific physiology and pathology. Prior studies show a clear pathogenic role for HUNK in breast cancer. HUNK is upregulated in response to oncogenic HER2/neu and Akt, and there is strong evidence that HUNK is critical for the survival of breast cancer cells. Further evidence shows that inhibiting HUNK using a variety of breast cancer models, including those that are resistant, inhibits tumorigenesis and metastasis. However, HUNK alterations are infrequent. Here, the incidence and consequence of HUNK alterations in breast cancer is reviewed using data mined from the online database cBioPortal and considered in relation to prior research studies.

8.
Oncoscience ; 7(5-6): 30-33, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32676513

RESUMO

Once metastatic disease has occurred, there is no cure for breast cancer. Consequently, identifying factors that promote and support breast cancer metastasis is critical for understanding how to pharmacologically target this process. Hormonally up-regulated neu-associated kinase (HUNK) is a serine/threonine protein kinase related to the sucrose non-fermenting-1 (Snf-1)/5' adenosine monophosphate-activated protein kinase (AMPK) family of kinases. HUNK has been found to play a role in breast cancer metastasis. However, conflicting reports indicate HUNK is a metastasis promoting factor as well as an inhibiting factor. Our group recently provided evidence that supports the conclusion that HUNK is a metastasis promoting factor by showing that HUNK regulates breast cancer metastasis through phosphorylation of EGFR. Here, we summarize our findings and discuss their implications toward pharmacological targeting of HUNK in breast cancer.

9.
Oncotarget ; 9(89): 35962-35973, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30542510

RESUMO

HUNK is a protein kinase that is implicated in HER2-positive (HER2+) breast cancer progression and resistance to HER2 inhibitors. Though prior studies suggest there is therapeutic potential for targeting HUNK in HER2+ breast cancer, pharmacological agents that target HUNK are yet to be identified. A recent study showed that the broad-spectrum kinase inhibitor staurosporine binds to the HUNK catalytic domain, but the effect of staurosporine on HUNK enzymatic activity was not tested. We now show that staurosporine inhibits the kinase activity of a full length HUNK protein. Our findings further suggest that inhibiting HUNK with staurosporine has a strong effect on suppressing cell viability of HER2/neu mammary and breast cancer cells, which express high levels of HUNK protein and are dependent on HUNK for survival. Significantly, we use in vitro and in vivo methods to show that staurosporine synergizes with the HER2 inhibitor lapatinib to restore sensitivity toward HER2 inhibition in a HER2 inhibitor resistant breast cancer model. Collectively, these studies indicate that pharmacological inhibition of HUNK kinase activity has therapeutic potential for HER2+ breast cancers, including HER2+ breast cancers that have developed drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA