RESUMO
Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.
Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Glicogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Glicogênio Fosforilase/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transição de Fase , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
The Hippo-YAP signaling pathway plays a critical role in development, homeostasis, regeneration, and tumorigenesis by converging on YAP, a coactivator for the TEAD family DNA-binding transcription factors, to regulate downstream transcription programs. Given its pivotal role as the nuclear effector of the Hippo pathway, YAP is indispensable in multiple developmental and tissue contexts. Here we report that the essentiality of YAP in liver and lung development can be genetically bypassed by simultaneous inactivation of the TEAD corepressor VGLL4. This striking antagonistic epistasis suggests that the major physiological function of YAP is to antagonize VGLL4. We further show that the YAP-VGLL4 antagonism plays a widespread role in regulating Hippo pathway output beyond normal development, as inactivation of Vgll4 dramatically enhanced intrahepatic cholangiocarcinoma formation in Nf2-deficient livers and ameliorated CCl4-induced damage in normal livers. Interestingly, Vgll4 expression is temporally regulated in development and regeneration and, in certain contexts, provides a better indication of overall Hippo pathway output than YAP phosphorylation. Together, these findings highlight the central importance of VGLL4-mediated transcriptional repression in Hippo pathway regulation and inform potential strategies to modulate Hippo signaling in cancer and regenerative medicine.
Assuntos
Via de Sinalização Hippo , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição de Domínio TEARESUMO
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Assuntos
Neoplasias , Fatores de Transcrição de Domínio TEA , Humanos , Fatores de Transcrição/metabolismo , Neoplasias/tratamento farmacológico , Via de Sinalização HippoRESUMO
YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/genética , Transativadores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Sinalização YAP , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Ubiquitinação , Neoplasias da Mama/genética , Ubiquitinas/metabolismo , Ligases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismoRESUMO
YAP/TEAD are nuclear effectors of the Hippo pathway, regulating organ size and tumorigenesis largely through promoter-associated function. However, their function as enhancer regulators remains poorly understood. Through an in vivo proximity-dependent labeling (BioID) technique, we identified YAP1 and TEAD4 protein as co-regulators of ERα on enhancers. The binding of YAP1/TEAD4 to ERα-bound enhancers is augmented upon E2 stimulation and is required for the induction of E2/ERα target genes and E2-induced oncogenic cell growth. Furthermore, their enhancer binding is a prerequisite for enhancer activation marked by eRNA transcription and for the recruitment of the enhancer activation machinery component MED1. The binding of TEAD4 on active ERE-containing enhancers is independent of its DNA-binding behavior, and instead, occurs through protein-tethering trans-binding. Our data reveal a non-canonical function of YAP1 and TEAD4 as ERα cofactors in regulating cancer growth, highlighting the potential of YAP/TEAD as possible actionable drug targets for ERα+ breast cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Estrogênios/farmacologia , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Camundongos Nus , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Proteínas de Sinalização YAPRESUMO
Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.
Assuntos
Fibroblastos/citologia , Fibrose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Fibrose/fisiopatologia , Deleção de Genes , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteínas de Sinalização YAPRESUMO
The Hippo pathway is an evolutionarily conserved kinase cascade that is fundamental for tissue development, homeostasis, and regeneration. In the developing mammalian heart, Hippo signaling regulates cardiomyocyte numbers and organ size. While cardiomyocytes in the adult heart are largely postmitotic, Hippo deficiency can increase proliferation of these cells and affect cardiac regenerative capacity. Recent studies have also shown that resident cardiac fibroblasts play a critical role in disease responsiveness and healing, and in this issue of Genes and Development, Xiao and colleagues (pp. 1491-1505) demonstrate that Hippo signaling also integrates the activity of fibroblasts in the heart. They show that Hippo signaling normally maintains the cardiac fibroblast in a resting state and, conversely, its inactivation during disease-related stress results in a spontaneous transition toward a myofibroblast state that underlies fibrosis and ventricular remodeling. This phenotypic switch is associated with increased cytokine signaling that promotes nonautonomous resident fibroblast and myeloid cell activation.
Assuntos
Negociação , Proteínas Serina-Treonina Quinases , Animais , Proliferação de Células , Fibroblastos , Fibrose , Miócitos CardíacosRESUMO
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Assuntos
Sinais (Psicologia) , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Coração , Miocárdio , Transdução de Sinais , Via de Sinalização Hippo , Proliferação de CélulasRESUMO
Cells sense and respond to various mechanical forces from the extracellular matrix primarily by modulating the actin cytoskeleton. Mechanical forces can be translated into biochemical signals in a process called mechanotransduction. Yes-associated protein (YAP) is an effector of Hippo signaling and a mediator of mechanotransduction, but how mechanical forces regulate Hippo signaling is still an open question. We propose that retinoic acid-induced protein 14 (RAI14) responds to mechanical forces and regulates Hippo signaling. RAI14 positively regulates the activity of YAP. RAI14 interacts with NF2, a key component of the Hippo pathway, and the interaction occurs on filamentous actin. When mechanical forces are kept low in cells, NF2 dissociates from RAI14 and filamentous actin, resulting in increased interactions with LATS1 and activation of the Hippo pathway. Clinical data show that tissue stiffness and expression of RAI14 and YAP are upregulated in tumor tissues and that RAI14 is strongly associated with adverse outcome in patients with gastric cancer. Our data suggest that RAI14 links mechanotransduction with Hippo signaling and mediates Hippo-related biological functions such as cancer progression.
Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Mecanotransdução Celular , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Assuntos
Pulmão , Alvéolos Pulmonares , Camundongos , Animais , Pulmão/metabolismo , Diferenciação Celular , Transdução de SinaisRESUMO
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Assuntos
Adenovírus Humanos , Proteínas Oncogênicas Virais , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Transformação Celular Neoplásica/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas Oncogênicas Virais/metabolismo , DNA , Mamíferos/genéticaRESUMO
Mutations in PKD1 and PKD2 are the leading cause of autosomal dominant polycystic kidney disease (ADPKD). In this issue of Genes & Development, a report by Cai and colleagues (pp. 781-793) reveals new insight into the molecular basis by which PKD1 deficiency leads to cystic kidney pathogenesis. By using extensive mouse genetic analyses coupled with in vitro cystic assays, the investigators delineate a RhoA-YAP-c-Myc signaling axis as a key downstream from PKD1 deficiency in ADPKD pathogenesis. Their findings provide evidence that the Hippo pathway could be a potential target for treating ADPKD.
Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Camundongos , Mutação , Fosfoproteínas , Transdução de Sinais , Canais de Cátion TRPP/genética , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTPRESUMO
During mammalian brain development, radial glial progenitors balance between proliferation and differentiation to generate the laminated cortical layers in a temporally precise fashion. Defects in the individual steps going into this complex organogenesis can result in cortical malformations and human nervous system disorders. In this issue of Genes & Development, Liu and colleagues (pp. 763-780) present experimental evidence that an evolutionarily conserved cellular polarity gene, Pard3 (partitioning-defective 3), controls the balance of radial glial proliferation and differentiation through interaction with the Hippo signal transduction pathway. Conditional deletion of Pard3 in the developing rodent cortex resulted in striking subcortical band heterotopia, reminiscent of a severe form of human cortical malformation.
Assuntos
Polaridade Celular , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Via de Sinalização Hippo , Humanos , Proteínas de Membrana , Neurogênese , Proteínas Serina-Treonina QuinasesRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder caused by mutations in PKD1 or PKD2 and affects one in 500-1000 humans. Limited treatment is currently available for ADPKD. Here we identify the Hippo signaling effector YAP and its transcriptional target, c-Myc, as promoters of cystic kidney pathogenesis. While transgenic overexpression of YAP promotes proliferation and tubule dilation in mouse kidneys, loss of YAP/TAZ or c-Myc suppresses cystogenesis in a mouse ADPKD model resulting from Pkd1 deficiency. Through a comprehensive kinase inhibitor screen based on a novel three-dimensional (3D) culture of Pkd1 mutant mouse kidney cells, we identified a signaling pathway involving the RhoGEF (guanine nucleotide exchange factor) LARG, the small GTPase RhoA, and the RhoA effector Rho-associated kinase (ROCK) as a critical signaling module between PKD1 and YAP. Further corroborating its physiological importance, inhibition of RhoA signaling suppresses cystogenesis in 3D culture of Pkd1 mutant kidney cells as well as Pkd1 mutant mouse kidneys in vivo. Taken together, our findings implicate the RhoA-YAP-c-Myc signaling axis as a critical mediator and potential drug target in ADPKD.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Rim/fisiopatologia , Fosfoproteínas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Rim/citologia , Rim/patologia , Camundongos , Fosfoproteínas/genética , Doenças Renais Policísticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTPRESUMO
Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy.
Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Córtex Cerebral/fisiopatologia , Convulsões/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Córtex Cerebral/fisiologia , Células Ependimogliais/fisiologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais/genética , Células-Tronco/fisiologia , Transativadores , Proteínas de Sinalização YAPRESUMO
The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ciclopentanos , Proteína NEDD8 , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Peixe-Zebra , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Humanos , Animais , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Peixe-Zebra/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ciclopentanos/metabolismo , Via de Sinalização Hippo , Apoptose , Pirimidinas/farmacologia , Células HEK293 , Feminino , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Processamento de Proteína Pós-TraducionalRESUMO
The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.
Assuntos
Dissulfiram , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Dissulfiram/farmacologia , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genéticaRESUMO
Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse, and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction led to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.
Assuntos
Via de Sinalização Hippo , Hiperuricemia , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Regulação para Cima , Ácido Úrico , Animais , Humanos , Masculino , Camundongos , Ratos , Hiperuricemia/metabolismo , Hiperuricemia/genética , Hiperuricemia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ácido Úrico/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismoRESUMO
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.
Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , FosforilaçãoRESUMO
BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.