Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 282: 116706, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996647

RESUMO

Antibiotics are frequently employed to control bacterial diseases in honeybees, but their broad-spectrum action can disrupt the delicate balance of the gut microbiome, leading to dysbiosis. This imbalance in the gut microbiota of honeybees adversely affects their physiological health and weakens their resistance to pathogens, including viruses that significantly threaten honeybee health. In this study, we investigated whether tetracycline-induced gut microbiome dysbiosis promotes the replication of Israeli acute paralysis virus (IAPV), a key virus associated with colony losses and whether IAPV infection exacerbates gut microbiome dysbiosis. Our results demonstrated that tetracycline-induced gut microbiome dysbiosis increases the susceptibility of honeybees to IAPV infection. The viral titer in worker bees with antibiotic-induced gut microbiome dysbiosis prior to IAPV inoculation was significantly higher than in those merely inoculated with IAPV. Furthermore, we observed a synergistic effect between tetracycline and IAPV on the disruption of the honeybee gut microbiome balance. The progression of IAPV replication could, in turn, exacerbate antibiotic-induced gut microbiome dysbiosis in honeybees. Our research provides novel insights into the role of the gut microbiota in host-virus interactions, emphasizing the complex interplay between antibiotic use, gut microbiome health, and viral susceptibility in honeybees. We highlight the crucial role of a balanced gut microbiota in honey bees for their immune response against pathogens and emphasize the importance of careful, safe antibiotic use in beekeeping to protect these beneficial microbes.


Assuntos
Antibacterianos , Dicistroviridae , Disbiose , Microbioma Gastrointestinal , Tetraciclina , Animais , Abelhas/virologia , Abelhas/microbiologia , Abelhas/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Disbiose/induzido quimicamente , Disbiose/virologia , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Dicistroviridae/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade
2.
Virol J ; 20(1): 134, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349817

RESUMO

Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or 'druggable' target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium (KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field.


Assuntos
Viroses , Abelhas , Animais , Espécies Reativas de Oxigênio/metabolismo , Antivirais , Trifosfato de Adenosina/metabolismo , Canais de Potássio
3.
Oecologia ; 202(2): 325-335, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284861

RESUMO

Host-parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host-parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection.


Assuntos
Coinfecção , Nosema , Abelhas , Animais , Interações Hospedeiro-Parasita
4.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576241

RESUMO

Although it had been reported that Israeli acute paralysis virus (IAPV) can cause systemic infection in honey bees, little is known about how it establishes this infection and results in the typical symptoms, paralysis and trembling. Here, we used our previously constructed IAPV infectious clone to investigate viral loads in different tissues of honey bees and further identify the relation between tissue tropism and paralytic symptoms. Our results showed that tracheae showed a greater concentration of viral abundance than other tissues. The abundance of viral protein in the tracheae was positively associated with viral titers, and was further confirmed by immunological and ultrastructural evidence. Furthermore, higher viral loads in tracheae induced remarkable down-regulation of succinate dehydrogenase and cytochrome c oxidase genes, and progressed to causing respiratory failure of honey bees, resulting in the appearance of typical symptoms, paralysis and body trembling. Our results showed that paralysis symptoms or trembling was actually to mitigate tachypnea induced by IAPV infection due to the impairment of honey bee tracheae, and revealed a direct causal link between paralysis symptoms and tissue tropism. These findings provide new insights into the understanding of the underlying mechanism of paralysis symptoms of honey bees after viral infection and have implications for viral disease prevention and specific therapeutics in practice.


Assuntos
Dicistroviridae , Paralisia/fisiopatologia , Taquipneia/fisiopatologia , Viroses/fisiopatologia , Animais , Abelhas/virologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Paralisia/virologia , Succinato Desidrogenase/metabolismo , Taquipneia/virologia , Traqueia/virologia , Carga Viral , Proteínas Virais , Viroses/virologia
5.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143291

RESUMO

Honey bee viruses are associated with honey bee colony decline. Israeli acute paralysis virus (IAPV) is considered to have a strong impact on honey bee survival. Phylogenetic analysis of the viral genomes from several regions of the world showed that various IAPV lineages had substantial differences in virulence. Chronic bee paralysis virus (CBPV), another important honey bee virus, can induce two significantly different symptoms. However, the infection characteristics and pathogenesis of IAPV and CBPV have not been completely elucidated. Here, we constructed infectious clones of IAPV and CBPV using a universal vector to provide a basis for studying their replication and pathogenesis. Infectious IAPV and CBPV were rescued from molecular clones of IAPV and CBPV genomes, respectively, that induced typical paralysis symptoms. The replication levels and expression proteins of IAPV and CBPV in progeny virus production were confirmed by qPCR and Western blot. Our results will allow further dissection of the role of each gene in the context of viral infection while helping to study viral pathogenesis and develop antiviral drugs using reverse genetics systems.


Assuntos
Abelhas/virologia , Dicistroviridae/genética , Vírus de Insetos/genética , Genética Reversa , Animais , Genoma Viral , Filogenia , Viroses/veterinária
6.
J Invertebr Pathol ; 151: 158-164, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203138

RESUMO

Israeli acute paralysis virus (IAPV) can cause a systemic infection, resulting in mortality in both Apis and Bombus spp. bees. However, little is known about the virus infection dynamics within bee tissues. Here, we established systemic IAPV infections in reared bumblebee Bombus terrestris workers through feeding and injection and investigated the mortality, tissue tropism and viral localization. Injection of approximately 500 IAPV (IAPVinj stock) particles resulted in acute infection, viral loads within tissues that were relatively stable from bee to bee, and a distinctive tissue tropism, making this method suitable for studying systemic IAPV infection in bumblebees. Feeding with approximately 1 × 106 particles of the same virus stock did not result in systemic infection. A high-concentration stock of IAPV (IAPVfed stock) allowed us to feed bumblebees with approximately 1 × 109 viral particles, which induced both chronic and acute infection. We also observed a higher variability in viral titers within tissues and less clear tissue tropism during systemic infection, making feeding with IAPVfed stock less optimal for studying IAPV systemic infection. Strikingly, both infection methods and stocks with different viral loads gave a similar viral localization pattern in the brain and midgut of bumblebees with an acute infection. The implications of these findings in the study of the local immunity in bees and barriers to oral transmission are discussed. Our data provide useful information on the establishment of a systemic viral infection in bees.


Assuntos
Abelhas/virologia , Dicistroviridae/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Animais
7.
BMC Genomics ; 18(1): 207, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249569

RESUMO

BACKGROUND: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Assuntos
Abelhas/genética , Interações Hospedeiro-Patógeno/genética , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunidade Inata/genética , Anotação de Sequência Molecular , Nosema/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia
8.
J Invertebr Pathol ; 146: 24-30, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28400199

RESUMO

We examined whether alfalfa leafcutting bees (ALCB, Megachille rotundata) experienced a higher incidence of seven viruses commonly found honey bees (Apis mellifera) when placed alongside honey bees for hybrid canola seed pollination. Although two viruses - sacbrood virus (SBV) and deformed wing virus (DWV) - were detected in ALCB adults, their presence appeared independent of whether honey bees were present in the same field or not. A further survey of viruses among ALCB adults in three different alfalfa seed growing regions in Western Canada confirmed the ubiquity of sacbrood virus (SBV) as well as the infrequent presence of acute bee paralysis virus (ABPV), both of which had not been previously reported on ALCB. Moreover, SBV and ABPV were detected in the cocoon stage and only in one region. Co-infection among pools of ALCB adults with both of these viruses was more closely correlated with decreasing levels of cocoon viability than infection levels in cocoons themselves. This research suggests ongoing viral transmission between honey bees and ALCB in the same fields is likely low but that co-infection with these viruses may lower ALCB productivity.


Assuntos
Abelhas/virologia , Vírus de Insetos/patogenicidade , Animais , Canadá , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Especificidade da Espécie
9.
Front Microbiol ; 15: 1389313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817969

RESUMO

Introduction: As an important social insect, honey bees play crucial roles in agricultural production, sustainable development of agricultural production, and the balance of the natural environment. However, in recent years, Israeli acute paralysis virus (IAPV) and chronic bee paralysis virus (CBPV), the main pathogens of bee paralysis, have continuously harmed bee colonies and caused certain losses to the beekeeping industry. Some beekeeping farms are located in wild or remote mountainous areas, and samples from these farms cannot be sent to the laboratory for testing in a timely manner, thereby limiting the accurate and rapid diagnosis of the disease. Methods and results: In this study, we used a reverse transcription-recombinase polymerase amplification-lateral flow dipstick (RT-RPA-LFD) method for the dual detection of IAPV and CBPV. RPA primers and LFD detection probes were designed separately for their conserved genes. Primers and probes were screened, and the forward and reverse primer ratios, reaction times, and temperatures were optimized. According to the results of the optimization tests, the optimal reaction temperature for RT-RPA is 37°C, and when combined with LFD, detection with the naked eye requires <20 min. The developed RPA-LFD method specifically targets IAPV and CBPV and has no cross-reactivity with other common bee viruses. In addition, the minimum detection limit of the RT-RPA-LFD method is 101 copies/µL. Conclusion: Based this study, this method is suitable for the detection of clinical samples and can be used for field detection of IAPV and CBPV.

10.
Arch Razi Inst ; 78(5): 1572-1578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590666

RESUMO

In this study, the Israeli acute paralysis virus (IAPV), a single-stranded RNA virus, was investigated in honey bee colonies, which had a history of mortality, population decline, and parasitic diseases. Samples (adult honey bees) were collected from 328 apiaries from three provinces (Tehran, Alborz, and Mazandaran) of Iran to detect IAPV. After sample preparation, RNA was extracted and cDNA was synthesized to perform the reverse transcription polymerase chain reaction (RT-PCR) method using a PCR primer pair, and a 185 bp fragment was amplified. The results showed that out of 328 samples, 103 (31.4%) samples were positive, which were from Mazandaran (14.33%), Tehran (8.84%), and Alborz (8.23%) provinces. Subsequently, some of the positive samples were sequenced and a phylogenetic tree was drawn. The phylogenetic tree showed that the virus isolates were divided into two distinct groups, including one group that had a high similarity to the European acute bee paralysis virus (ABPV) and one group that had a high similarity to the Kashmir bee virus. In addition, the sequences of the samples in three regions were separated in a node from the strains of ABPV from Eastern Europe. Since the length of the branch between the Iranian sequences and the different strains of ABPV from Eastern Europe was short, it can be assumed that the sequences from Iran have a common ancestor with the mentioned strains of ABPV from Eastern Europe.


Assuntos
Dicistroviridae , Abelhas , Animais , Dicistroviridae/genética , Irã (Geográfico)/epidemiologia , Filogenia , Epidemiologia Molecular
11.
ACS Nano ; 17(21): 21662-21677, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906569

RESUMO

Natural plant nanocrystalline cellulose (NCC), exhibiting a number of exceptional performance characteristics, is widely used in food fields. However, little is known about the relationship between NCC and the antiviral effect in animals. Here, we tested the function of NCC in antiviral methods utilizing honey bees as the model organism employing Israeli acute paralysis virus (IAPV), a typical RNA virus of honey bees. In both the lab and the field, we fed the IAPV-infected bees various doses of jute NCC (JNCC) under carefully controlled conditions. We found that JNCC can reduce IAPV proliferation and improve gut health. The metagenome profiling suggested that IAPV infection significantly decreased the abundance of gut core bacteria, while JNCC therapy considerably increased the abundance of the gut core bacteria Snodgrassella alvi and Lactobacillus Firm-4. Subsequent metabolome analysis further revealed that JNCC promoted the biosynthesis of fatty acids and unsaturated fatty acids, accelerated the purine metabolism, and then increased the expression of antimicrobial peptides (AMPs) and the genes involved in the Wnt and apoptosis signaling pathways against IAPV infection. Our results highlighted that JNCC could be considered as a prospective candidate agent against a viral infection.


Assuntos
Corchorus , Dicistroviridae , Microbioma Gastrointestinal , Abelhas , Animais , Celulose/farmacologia , Corchorus/genética , Antivirais/farmacologia
12.
Virol Sin ; 38(4): 531-540, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156298

RESUMO

The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.


Assuntos
Picornaviridae , RNA Polimerase Dependente de RNA , RNA Polimerase Dependente de RNA/metabolismo , Picornaviridae/genética , RNA
13.
J Clin Med ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048537

RESUMO

Non-invasive ventilatory support (NVS) is a technique used to reduce respiratory work in neuromuscular diseases, preventing the progression of respiratory failure. NVS is usually administered via a nasal or an oronasal mask, causing discomfort, especially in patients ventilated for more than 16 h/day. Intermittent abdominal pressure ventilation (IAPV) differs completely from conventional NVS and consists of a portable ventilator and a corset with Velcro closures as the interface. In our study, the practicability and efficacy of IAPV were studied in three Italian centers monitoring 28 neuromuscular patients using IAPV who were then retrospectively analyzed. The primary outcomes were an improvement in hypoxemia and the normalization of hypercapnia, and the secondary outcome was an improvement in quality of life. Data were collected at baseline (T0) and after two hours of ventilation (T1), with follow-ups at three months (T2) and six months (T3). Statistical significance was found for PaCO2 over time (F (2.42) = 7.63, p = 0.001) and PaO2 (W = 0.539, p = 0.033). The time of NVS usage also significantly affected the quality of life (F (2.14) = 6.90, p = 0.010), as seen when comparing T0 and T3. As an alternative ventilation method, IAPV is still relevant today and could become a key part of daytime support, especially for patients who do not tolerate standard daytime NVS with an oral interface.

14.
Gels ; 8(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35735719

RESUMO

Inaccessible pore volume (IAPV) can have an important impact on the placement of gelant during in situ gel treatment for conformance control. Previously, IAPV was considered to be a constant factor in simulators, yet it lacked dynamic characterization. This paper proposes a numerical simulation model of IAPV. The model was derived based on the theoretical hydrodynamic model of gelant molecules. The model considers both static features, such as gelant and formation properties, and dynamic features, such as gelant rheology and retention. To validate our model, we collected IAPV from 64 experiments and the results showed that our model fit moderately into these lab results, which proved the robustness of our model. The results of the sensitivity test showed that, considering rheology and retention, IAPV in the matrix dramatically increased when flow velocity and gelant concentration increased, but IAPV in the fracture maintained a low value. Finally, the results of the penetration degree showed that the high IAPV in the matrix greatly benefited gelant placement near the wellbore situation with a high flow velocity and gelant concentration. By considering dynamic features, this new numerical model can be applied in future integral reservoir simulators to better predict the gelant placement of in situ gel treatment for conformance control.

15.
Front Vet Sci ; 9: 951159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277062

RESUMO

The health of the western honeybee, Apis mellifera, the most crucial pollinator, has been challenged globally over the past decades. An ectoparasitic mite, Varroa destructor, together with the viruses it vectored, is generally regarded as the vital pathogenic agent. Although the poor health status of A. mellifera compared to its eastern counterpart, Apis cerana, has been broadly identified, the underlying mechanism remains poorly understood and comparison between susceptible and resistant hosts will potentially ameliorate this predicament. Here, we investigated the impacts of two widespread viruses-deformed wing virus type A (DWV-A) and Israeli acute paralysis virus (IAPV), mediated by V. destructor mite, on the capped developing honeybee brood, in the absence of adult workers, of A. mellifera and A. cerana, with positive and negative controls. Our results demonstrated that the endogenous viruses imposed limited damage on the hosts even if the brood was wounded. In contrast, the exogenous viruses introduced by ectoparasites triggered variable mortality of the infested brood between host species. Intriguingly, death causes of both honeybee species presented a similar trend: the acute IAPV generally causes morbidity and mortality of late larvae, while the chronic DWV-A typically leads to brood mortality during and after pupation. Notably, the susceptible immature A. cerana individuals, supported by higher observed mortality and a lower virus tolerance, serve the interests of the colony and foster the overall survival of a resistant honeybee superorganism. These results improve our understanding of the interactions between viruses carried by ectoparasites and their developing hosts, and the novel insight of weak individuals fostering strong colonies may promote breeding efforts to mitigate the indefensible colony losses globally.

16.
Front Genet ; 11: 566320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101388

RESUMO

Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.

17.
Viruses ; 12(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192060

RESUMO

The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.


Assuntos
Abelhas/virologia , Viroses/veterinária , Animais , Abelhas/genética , Abelhas/imunologia , Comportamento Animal , Dicistroviridae , Feminino , Vírus de Insetos , Reprodução , Viroses/imunologia , Viroses/transmissão
18.
Viruses ; 12(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861567

RESUMO

Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Abelhas/parasitologia , Abelhas/virologia , Insetos Vetores/virologia , Vírus de Insetos/classificação , Vírus de Insetos/genética , Filogenia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Filogeografia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30705755

RESUMO

Non-invasive ventilation (NIV) is the treatment of choice for patients symptomatic for respiratory muscle dysfunction. It can normalize gas exchange and provide up to continuous non-invasive ventilator support (CNVS) as an alternative to intubation and tracheotomy. It is usually provided via non-invasive facial interfaces or mouthpieces, but these can be uncomfortable and uncosmetic. The intermittent abdominal pressure ventilator (IAPV) has been used for diurnal ventilatory support since 1938 but has been off the market since about 1990. Now, however, with greater emphasis on non-invasive management, a new IAPV is available. A patient with chronic ventilatory insufficiency post-ischemic cervical myelopathy, dependent on sleep NVS since 2003, developed symptomatic daytime hypercapnia for which he also used diurnal NVS via nasal pillows. However, he preferred not having to use facial interfaces. When not using diurnal NVS he was becoming dyspnoeic. Diurnal use of an IAPV was introduced. Arterial blood gas analysis using the IAPV decreased his blood pH from 7.45 to 7.42, PaCO2 from 58 to 37 mmHg, and improved PaO2 from 62 to 92 mmHg. At discharge, the patient used the IAPV 8 h/day with improved mood and quality of life. Consequently, he returned to work as a painter.

20.
Dev Comp Immunol ; 81: 152-155, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29170046

RESUMO

Within insects, inductions of antimicrobial peptides (AMPs) have been reported after different virus challenges. It is believed that this link is not directly induced by the virus itself, but rather indirectly induced by secondary effects of virus infection. Here we explored if direct sensing of the virus could trigger AMP expression. Recently, a cytokine-like molecule vago, a member of the Single von Willebrand factor C-domain (SVC) protein family, has been shown to be induced by virus infection in a Dicer-2 dependent manner. SVCs are also reported to be responsive in relation to multiple environmental challenges including bacterial infections and the nutritional status in the model species Drosophila melanogaster. Within the bumblebee Bombus terrestris only one SVC member has been identified and is proven to be involved in both the host antiviral defense and the basal expression of AMP genes, thereby it is a possible candidate linking virus infection and AMPs induction. Here we showed that the injection of Israeli acute paralysis virus (IAPV) resulted in a higher hymenoptaecin expression at 1dpi. This expression is IAPV specific as neither injection of slow bee paralysis virus (SBPV) nor random dsRNA results in a similar induction at 1dpi. We could not prove that hymenoptaecin expression after IAPV treatment was related to BtSVC, as a silencing experiment did not lower hymenoptaecin induction. This leaves indirect activation by secondary effects of IAPV infection as a mechanism of AMP genes induction, or that IAPV infection influences the AMP expression dynamics which is initially induced by non-virus related triggers.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Abelhas/genética , Dicistroviridae/imunologia , Infecções por Vírus de RNA/imunologia , Fator de von Willebrand/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Domínios Proteicos/genética , RNA Helicases/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Ativação Transcricional , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA