Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.944
Filtrar
1.
Cell ; 179(1): 236-250.e18, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495571

RESUMO

Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.


Assuntos
Imunoterapia/métodos , Melanoma/metabolismo , Melanoma/terapia , Mitocôndrias/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/terapia , Transferência Adotiva/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Humanos , Metabolismo dos Lipídeos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem
2.
Cell ; 175(2): 442-457.e23, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290143

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) critically contribute to the efficacy of anti-tumor therapeutic antibodies. We report here an unexpected finding that macrophages after ADCP inhibit NK cell-mediated ADCC and T cell-mediated cytotoxicity in breast cancers and lymphomas. Mechanistically, AIM2 is recruited to the phagosomes by FcγR signaling following ADCP and activated by sensing the phagocytosed tumor DNAs through the disrupted phagosomal membrane, which subsequently upregulates PD-L1 and IDO and causes immunosuppression. Combined treatment with anti-HER2 antibody and inhibitors of PD-L1 and IDO enhances anti-tumor immunity and anti-HER2 therapeutic efficacy in mouse models. Furthermore, neoadjuvant trastuzumab therapy significantly upregulates PD-L1 and IDO in the tumor-associated macrophages (TAMs) of HER2+ breast cancer patients, correlating with poor trastuzumab response. Collectively, our findings unveil a deleterious role of ADCP macrophages in cancer immunosuppression and suggest that therapeutic antibody plus immune checkpoint blockade may provide synergistic effects in cancer treatment.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citofagocitose/imunologia , Macrófagos/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antígeno B7-H1/genética , Antígeno B7-H1/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citofagocitose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/fisiologia , Linfoma/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fagocitose/imunologia , Fagocitose/fisiologia , Fagossomos/fisiologia , Receptores de IgG/imunologia
3.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056344

RESUMO

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Assuntos
Neoplasias/genética , Adulto , Criança , Análise por Conglomerados , DNA Polimerase II/genética , DNA Polimerase III/genética , Replicação do DNA , Humanos , Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a Poli-ADP-Ribose/genética
4.
CA Cancer J Clin ; 72(1): 57-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714553

RESUMO

Oral mucositis (OM) is a common, highly symptomatic complication of cancer therapy that affects patients' function, quality of life, and ability to tolerate treatment. In certain patients with cancer, OM is associated with increased mortality. Research on the management of OM is ongoing. Oral mucosal toxicities are also reported in targeted and immune checkpoint inhibitor therapies. The objective of this article is to present current knowledge about the epidemiology, pathogenesis, assessment, risk prediction, and current and developing intervention strategies for OM and other ulcerative mucosal toxicities caused by both conventional and evolving forms of cancer therapy.


Assuntos
Antineoplásicos/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Neoplasias/terapia , Úlceras Orais/epidemiologia , Lesões por Radiação/epidemiologia , Estomatite/epidemiologia , Humanos , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/patologia , Mucosa Bucal/efeitos da radiação , Úlceras Orais/diagnóstico , Úlceras Orais/etiologia , Úlceras Orais/psicologia , Prevalência , Qualidade de Vida , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/psicologia , Índice de Gravidade de Doença , Estomatite/diagnóstico , Estomatite/etiologia , Estomatite/psicologia
5.
Immunol Rev ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248154

RESUMO

Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.

6.
Immunol Rev ; 321(1): 20-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679959

RESUMO

Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular Imunogênica , Morte Celular , Imunidade Adaptativa , Microambiente Tumoral
7.
Semin Immunol ; 67: 101754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003055

RESUMO

The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.


Assuntos
Microbiota , Neoplasias , Humanos , Animais , Camundongos , Transplante de Microbiota Fecal/efeitos adversos , Inibidores de Checkpoint Imunológico , Resultado do Tratamento , Neoplasias/terapia , Neoplasias/etiologia
8.
Immunol Rev ; 318(1): 70-80, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449556

RESUMO

The broad application of immune checkpoint inhibitors (ICIs) has led to significant gains in cancer outcomes. By abrogating inhibitory signals, ICIs promote T cell targeting of cancer cells but can frequently trigger autoimmune manifestations, termed immune-related adverse events (irAEs), affecting essentially any organ system. Among cardiovascular irAEs, immune-related myocarditis (irMyocarditis) is the most described and carries the highest morbidity. The currently recommended treatment for irMyocarditis is potent immunosuppression with corticosteroids and other agents, but this has limited evidence basis. The cellular pathophysiology of irMyocarditis remains poorly understood, though mouse models and human data have both implicated effector CD8+ T cells, some of which are specific for the cardiomyocyte protein α-myosin. While the driving molecular signals and transcriptional programs are not well defined, the involvement of chemokine receptors such as CCR5 and CXCR3 has been proposed. Fundamental questions regarding why only approximately 1% of ICI recipients develop irMyocarditis and why irMyocarditis carries a much worse prognosis than other forms of lymphocytic myocarditis remain unanswered. Further work in both murine systems and with human samples are needed to identify better tools for diagnosis, risk-stratification, and treatment.


Assuntos
Miocardite , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Terapia de Imunossupressão
9.
Immunol Rev ; 318(1): 167-178, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37578634

RESUMO

Immune checkpoint inhibitors (ICIs) are potentially life-saving cancer therapies that can trigger immune-related adverse events (irAEs). irAEs can impact any organ and range in their presentation from mild side effects to life-threatening complications. The relationship between irAEs and antitumor immune responses is nuanced and may depend on the irAE organ, the tumor histology, and the patient. While some irAEs likely represent an immune response against antigens shared between tumor cells and healthy tissues, other irAEs may be entirely unrelated to antitumor immune responses. Clinical observations suggest that low-grade irAEs have a positive association with responses to ICIs, but the correlation between severe irAEs and clinical benefit is less clear. Currently, severe irAEs are typically treated by interrupting or permanently discontinuing ICI treatment and administering empirically selected systemic immunosuppressive agents. However, these interventions could potentially diminish the antitumor effects of ICIs. Efforts to understand the mechanistic relationship between irAEs and the tumor microenvironment have yielded meaningful insights and nominated therapeutic targets for irAE management that may preserve or even boost ICI efficacy. We explore the clinical and molecular relationship between irAEs and antitumor immunity as well as the role that irAE treatments may play in shaping antitumor immune responses.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunidade , Microambiente Tumoral
10.
Immunol Rev ; 318(1): 157-166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470280

RESUMO

Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Biomarcadores , Imunoterapia/efeitos adversos , Biomarcadores Tumorais
11.
Immunol Rev ; 318(1): 96-109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491734

RESUMO

Immune-related toxicities, otherwise known as immune-related adverse events (irAEs), occur in a substantial fraction of cancer patients treated with immune checkpoint inhibitors (ICIs). Ranging from asymptomatic to life-threatening, ICI-induced irAEs can result in hospital admission, high-dose corticosteroid treatment, ICI discontinuation, and in some cases, death. A deeper understanding of the factors underpinning severe irAE development will be essential for improved irAE prediction and prevention, toward maximizing the benefits and safety profiles of ICIs. In recent work, we applied mass cytometry, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing, and bulk T-cell receptor (TCR) sequencing to identify pretreatment determinants of severe irAE development in patients with advanced melanoma. Across 71 patients separated into three cohorts, we found that two baseline features in circulation-elevated activated CD4 effector memory T-cell abundance and TCR diversity-are associated with severe irAE development, independent of the affected organ system within 3 months of ICI treatment initiation. Here, we provide an extended perspective on this work, synthesize and discuss related literature, and summarize practical considerations for clinical translation. Collectively, these findings lay a foundation for data-driven and mechanistic insights into irAE development, with the potential to reduce ICI morbidity and mortality in the future.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Linfócitos T CD4-Positivos , Neoplasias/tratamento farmacológico
12.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39451158

RESUMO

Enhancing patient response to immune checkpoint inhibitors (ICIs) is crucial in cancer immunotherapy. We aim to create a data-driven mathematical model of the tumor immune microenvironment (TIME) and utilize deep reinforcement learning (DRL) to optimize patient-specific ICI therapy combined with chemotherapy (ICC). Using patients' genomic and transcriptomic data, we develop an ordinary differential equations (ODEs)-based TIME dynamic evolutionary model to characterize interactions among chemotherapy, ICIs, immune cells, and tumor cells. A DRL agent is trained to determine the personalized optimal ICC therapy. Numerical experiments with real-world data demonstrate that the proposed TIME model can predict ICI therapy response. The DRL-derived personalized ICC therapy outperforms predefined fixed schedules. For tumors with extremely low CD8 + T cell infiltration ('extremely cold tumors'), the DRL agent recommends high-dosage chemotherapy alone. For tumors with higher CD8 + T cell infiltration ('cold' and 'hot tumors'), an appropriate chemotherapy dosage induces CD8 + T cell proliferation, enhancing ICI therapy outcomes. Specifically, for 'hot tumors', chemotherapy and ICI are administered simultaneously, while for 'cold tumors', a mid-dosage of chemotherapy makes the TIME 'hotter' before ICI administration. However, in several 'cold tumors' with rapid resistant tumor cell growth, ICC eventually fails. This study highlights the potential of utilizing real-world clinical data and DRL algorithm to develop personalized optimal ICC by understanding the complex biological dynamics of a patient's TIME. Our ODE-based TIME dynamic evolutionary model offers a theoretical framework for determining the best use of ICI, and the proposed DRL agent may guide personalized ICC schedules.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Medicina de Precisão , Imunoterapia
13.
Trends Immunol ; 44(1): 44-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464584

RESUMO

The human microbiome is recognized as a key factor in health and disease. This has been further corroborated by identifying changes in microbiome composition and function as a novel hallmark in cancer. These effects are exerted through microbiome interactions with host cells, impacting a wide variety of developmental and physiological processes. In this review, we discuss some of the latest findings on how the bacterial component of the microbiome can influence outcomes for different cancer immunotherapy modalities, highlighting identified mechanisms of action. We also address the clinical efforts to utilize this knowledge to achieve better responses to immunotherapy. A refined understanding of microbiome variations in patients and microbiome-host interactions with cancer therapies is essential to realize optimal clinical responses.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/microbiologia , Imunoterapia , Bactérias
14.
Circ Res ; 135(10): 990-1003, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39328090

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events. METHODS: Apoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 64Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization. RESULTS: CCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment. CONCLUSIONS: Accelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 64Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-ECL1i (extracellular loop 1 inverso) PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.


Assuntos
Aterosclerose , Inibidores de Checkpoint Imunológico , Inflamação , Receptor de Morte Celular Programada 1 , Receptores CCR2 , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/imunologia , Camundongos , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/antagonistas & inibidores , Inflamação/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos Knockout para ApoE , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptores de LDL/genética , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Placa Aterosclerótica , Modelos Animais de Doenças , Camundongos Knockout , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Cobre
15.
Semin Immunol ; 61-64: 101660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36370672

RESUMO

Monoclonal antibodies that target specific ligand-receptor signaling pathways and act as immune checkpoint inhibitors have been designed to remove the brakes in T cells and restore strong and long-term antitumor-immunity. Of note, many of these inhibitory receptors are also expressed by Innate Lymphoid Cells (ILCs), suggesting that also blockade of inhibitory pathways in innate lymphocytes has a role in the response to the treatment with checkpoint inhibitors. ILCs comprise cytotoxic NK cells and "helper" subsets and are important cellular components in the tumor microenvironment. In addition to killing tumor cells, ILCs release inflammatory cytokines, thus contributing to shape adaptive cell activation in the context of immunotherapy. Therefore, ILCs play both a direct and indirect role in the response to checkpoint blockade. Understanding the impact of ILC-mediated response on the treatment outcome would contribute to enhance immunotherapy efficacy, as still numerous patients resist or relapse.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Imunoterapia , Células Matadoras Naturais , Citocinas/metabolismo , Microambiente Tumoral
16.
Semin Cancer Biol ; 106-107: 179-191, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39442678

RESUMO

Immunotherapy has revolutionized the management of various types of cancers, even those previously deemed untreatable. Nonetheless, these medications have been associated with inflammation and damage across various organs. These challenges are exemplified by the adverse cardiovascular impacts of cancer immunotherapy, which need comprehensive understanding, clarification, and management integrated into the overall care of cancer patients. Numerous anticancer immunotherapies have been linked to the prevalence and severity of cardiovascular toxicity. These challenges emphasize the importance of conducting fundamental and applied research to elucidate disease causes, discover prognostic indicators, enhance diagnostic methods, and create successful therapies. Despite the acknowledged importance of T cells, there remains a knowledge gap regarding the inciting antigens, the reasons for their recognition, and the mechanisms of how they contribute to cardiac cell injury. In this review, we summarize the molecular mechanism, epidemiology, diagnosis, pathophysiology and corresponding treatment of cardiovascular toxicity induced by immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapies (ACT), and bi-specific T-cell engagers (BiTEs) among others. By elucidating these aspects, we aim to provide a better understanding of immunotherapies in cancer treatment and offer guidance for their clinical application.

17.
Semin Cancer Biol ; 98: 11-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029867

RESUMO

Hypoxia is a hallmark feature of the tumor microenvironment which can promote mutagenesis and instability. This increase in mutational burden occurs as a result of the downregulation of DNA repair systems. Deficits in the DNA damage response can be exploited to induce cytotoxicity and treat advanced stage cancers. With the advent of precision medicine, agents such as Poly (ADP-ribose) polymerase (PARP) inhibitors have been used to achieve synthetic lethality in homology directed repair (HDR) deficient cancers. However, most cancers lack these predictive biomarkers. Treatment for the HDR proficient population represents an important unmet clinical need. There has been interest in the use of anti-angiogenic agents to promote tumor hypoxia and induce deficiency in a HDR proficient background. For example, the use of cediranib to inhibit PDGFR and downregulate enzymes of the HDR pathway can be used synergistically with a PARP inhibitor. This combination can improve therapeutic responses in HDR proficient cancers. Preclinical results and Phase II and III clinical trial data support the mechanistic rationale for the efficacy of these agents in combination. Future investigations should explore the effectiveness of cediranib and other anti-angiogenic agents with a PARP inhibitor to elicit an antitumor response and sensitize cancers to immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/farmacologia , Reparo do DNA , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Hipóxia/genética , Microambiente Tumoral
18.
EMBO J ; 40(13): e108130, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121201

RESUMO

While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis- and trans-regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.


Assuntos
Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Humanos , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
19.
Eur J Immunol ; 54(10): e2451212, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38996350

RESUMO

The PD-1-PD-L1 immune checkpoint helps to maintain self-tolerance and prevent the development of autoimmune diseases. Immune checkpoint inhibitors are successful immunotherapeutics for several cancers, but responding patients can develop immune-mediated adverse events. It is well established that PD-1 regulates CD4 and CD8 T-cell responses, but its role in controlling the activation of pathogenic γδ T cells is less clear. Here we examined the role of PD-1 in regulating γδ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We found that PD-1 was highly expressed on CD27- Vγ4 γδ T cells in the lymph node (LN) and CNS of mice with EAE. Treatment of mice with anti-PD-1 significantly augmented IL-17A-producing CD27- Vγ4 γδ T cells in the LN and CNS and enhanced the severity of EAE. The exacerbating effect of anti-PD-1 on EAE was lost in Tcrd-/- mice. Conversely, ligation of PD-1 suppressed Il17a and Rorc gene expression and IL-17A production by purified Vγ4 γδ T cells stimulated via the TCR, but not with IL-1ß and IL-23. Our study demonstrates that PD-1 regulates TCR-activated CD27- Vγ4 γδ T cells, but that cytokine-activated IL-17A producing γδ T cells escape the regulatory effects of the PD-1-PD-L1 pathway.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-17 , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Encefalomielite Autoimune Experimental/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Camundongos Knockout , Feminino , Esclerose Múltipla/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Células Th17/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfonodos/imunologia
20.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572651

RESUMO

Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-ß signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Aprendizado de Máquina , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA