Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2412165121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392666

RESUMO

Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.


Assuntos
Microbioma Gastrointestinal , Herbivoria , Animais , Microbioma Gastrointestinal/fisiologia , Bombyx/metabolismo , Bombyx/microbiologia , Morus , Simbiose , Lepidópteros/microbiologia , Spodoptera/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Digestão
2.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311002

RESUMO

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Assuntos
Aclimatação , Inversão Cromossômica , Animais , Inversão Cromossômica/genética , Fluxo Gênico , Genômica , Heterozigoto , Neópteros
3.
Proc Natl Acad Sci U S A ; 120(10): e2216922120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848561

RESUMO

Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Solanum lycopersicum , Animais , Solo , Insetos , Agricultura
4.
Annu Rev Entomol ; 69: 199-217, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270984

RESUMO

Brassica vegetable and oilseed crops are attacked by several different flea beetle species (Chrysomelidae: Alticini). Over the past decades, most research has focused on two Phyllotreta species, Phyllotreta striolata and Phyllotreta cruciferae, which are major pests of oilseed rape in North America. More recently, and especially after the ban of neonicotinoids in the European Union, the cabbage stem flea beetle, Psylliodes chrysocephala, has become greatly important and is now considered to be the major pest of winter oilseed rape in Europe. The major challenges to flea beetle control are the prediction of population dynamics in the field, differential susceptibility to insecticides, and the lack of resistant plant cultivars and other economically viable alternative management strategies. At the same time, many fundamental aspects of flea beetle biology and ecology, which may be relevant for the development of sustainable control strategies, are not well understood. This review focuses on the interactions between flea beetles and plants and summarizes the literature on current management strategies with an emphasis on the potential for biological control in flea beetle management.


Assuntos
Brassica napus , Brassica , Besouros , Inseticidas , Sifonápteros , Animais , Ecologia
5.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114195

RESUMO

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Fertilidade/genética
6.
Mol Plant Microbe Interact ; 37(3): 211-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148271

RESUMO

Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Floema , Saliva , Animais , Saliva/metabolismo , Floema/metabolismo , Insetos , Plantas , Herbivoria
7.
Mol Plant Microbe Interact ; 37(3): 338-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171380

RESUMO

Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Animais , Transcriptoma , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
8.
J Exp Biol ; 227(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39054940

RESUMO

The Order Lepidoptera contains nearly 160,000 described species and most of them are specialist herbivores that use restricted plant species as hosts. Speciation that originated from host shift is one of the important factors for the diversification of Lepidoptera. Because plants prepare secondary metabolites for defense against herbivores, with varying profiles of the components among different plant taxa, the specialist herbivores need to be adapted to the toxic substances unique to their host plants. Swallowtail butterflies of the genus Papilio consist of over 200 species. Approximately 80% of them utilize Rutaceae plants, and among the remaining species, a specific subgroup uses phylogenetically distant Apiaceae plants as larval hosts. Rutaceae and Apiaceae commonly contain toxic secondary metabolites, furanocoumarins, and molecular phylogenetic studies support the concept that Apiaceae feeders were derived from Rutaceae feeders. Molecular mechanisms underlying furanocoumarin tolerance in Papilio butterflies have been investigated almost exclusively in an Apiaceae feeder by an in vitro assay. In contrast, there is little information regarding the Rutaceae feeders. Here, we focused on a Rutaceae feeder, Papilio xuthus, and identified two furanocoumarin-responsive cytochrome P450-6B (CYP6B) genes, of which one was an ortholog of a furanocoumarin-metabolizing enzyme identified in the Apiaceae-feeding Papilio while the other was previously unreported. We further conducted in vivo functional analysis using the CRISPR/Cas9 system, revealing a contribution of these CYP6Bs to furanocoumarin tolerance of P. xuthus larvae. Our findings suggest that co-option of furanocoumarin-metabolizing CYP6B enzymes at least partially contributed to the host shift from Rutaceae to Apiaceae in Papilio butterflies.


Assuntos
Borboletas , Sistema Enzimático do Citocromo P-450 , Furocumarinas , Rutaceae , Animais , Borboletas/enzimologia , Borboletas/genética , Borboletas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Furocumarinas/metabolismo , Furocumarinas/química , Rutaceae/metabolismo , Rutaceae/genética , Rutaceae/química , Larva/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Filogenia , Herbivoria
9.
Ann Bot ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223914

RESUMO

BACKGROUND AND AIMS: Flower-visitor interactions comprise a continuum of behaviors, from mutualistic partners to antagonistic visitors. Despite being relatively frequent in natural communities, florivory remains unexplored, especially when comprising abiotic factors, spatio-temporal variations and global environmental changes. Here, we addressed the variation of florivory driven by changes in elevation and temporal flower availability. We expect decreased floral resources as elevation increases -due to environmental constraints- which may affect plant-florivore interactions. Yet, if floral resources decrease but florivores remain constant, then we may expect an increase in florivory with increasing elevation in the community. METHODS: The flowering phenology of plant individuals was recorded in the Neotropical campo rupestre vegetation, in southeastern Brazil. Damages by florivores were recorded in plots at elevations ranging from 823 to 1411 m using two response variables as a proxy for florivory: the proportion of attacked flowers per plant and the proportion of petal removal on single flowers. KEY RESULTS: Flower attack increased with elevation and damages were intensified in species with longer flowering periods. Conversely, longer flowering periods resulted in higher levels of petal removal when decreasing elevation. The temporal availability of flowers affected florivory, with the proportion of attacked flowers being more intense when there are less flowered individuals in the community. Petal removal on single flowers was intensified in plots with a larger number of individuals flowering, and with more species co-flowering. CONCLUSIONS: This study brings one of the broadest records of a commonly neglected interaction of insects feeding on floral structures, quantifying the combined effect of floral display and availability along an elevation gradient in a highly biodiverse mountaintop community. These findings contribute to filling in the gap in the understanding of florivory dynamics, focusing on a tropical mountaintop scenario facing imminent environmental changes and excessive natural resource exploitation.

10.
J Hered ; 115(5): 516-523, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38551670

RESUMO

Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled, and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27% of the genome, and 99.0% of expected single-copy orthologous genes were fully assembled. We identified 12,657 genes, fewer than in the four other species studied, and 46.4% fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7,258 orthogroups shared between RFUNE and AGLAB, 1,461 had more copies in AGLAB and 1,023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.


Assuntos
Besouros , Genoma de Inseto , Animais , Besouros/genética , Filogenia , Anotação de Sequência Molecular
11.
J Hered ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212260

RESUMO

Tetraopes are aposematic longhorn beetles (Cerambycidae) that feed primarily on toxic plants in the genus Asclepias (milkweeds). Studies of Tetraopes and their host plants have revealed compelling evidence for insect-plant coevolution and cospeciation. We sequenced, assembled and annotated the genome of the common red milkweed beetle, Tetraopes tetrophthalmus, and explored gene content and evolution, focusing on annotated genes putatively involved in chemosensation, allelochemical detoxification, and phytophagy. Comparisons were made to the Asian longhorned beetle (Anoplophora glabripennis) genome. The genome assembly comprised 779 Mb distributed across 1057 contigs, with an N50 of 2.21 Mb and 13,089 putative genes, including 97.3% of expected single-copy orthologs. Manual curation identified 122 putative odorant receptors (OR) and 162 gustatory receptors (GR), the former number similar to A. glabripennis but the latter only 69% of the A. glabripennis suite. We also documented a greater percentage of pseudogenic GRs and ORs compared to A. glabripennis, suggesting an ongoing reduction in chemosensory function, perhaps related to host specialization. We found lower diversity within certain well-studied gene families predicted to encode putative plant cell wall degrading enzymes in the T. tetrophthalmus genome, perhaps also due to host specialization. Exploring genes relevant to stress and allelochemical detoxification revealed evidence of an abundance of ABC-family genes in the T. tetrophthalmus genome, which may be related to sequestering toxic cardiac glycosides. Our studies further illuminate the genomic basis and evolution of chemosensation in longhorn beetles and provide a new vantage point from which to explore the ecology and evolution of specialized plant-feeding in Tetraopes and other phytophagous beetles.

12.
Proc Biol Sci ; 290(2008): 20230889, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817603

RESUMO

Weevils are an unusually species-rich group of phytophagous insects for which there is increasing evidence of frequent involvement in brood-site pollination. This study examines phylogenetic patterns in the emergence of brood-site pollination mutualism among one of the most speciose beetle groups, the flower weevils (subfamily Curculioninae). We analysed a novel phylogenomic dataset consisting of 214 nuclear loci for 202 weevil species, with a sampling that mainly includes flower weevils as well as representatives of all major lineages of true weevils (Curculionidae). Our phylogenomic analyses establish a uniquely comprehensive phylogenetic framework for Curculioninae and provide new insights into the relationships among lineages of true weevils. Based on this phylogeny, statistical reconstruction of ancestral character states revealed at least 10 independent origins of brood-site pollination in higher weevils through transitions from ancestral associations with reproductive structures in the larval stage. Broadly, our results illuminate the unexpected frequency with which true weevils-typically specialized phytophages and hence antagonists of plants-have evolved mutualistic interactions of ecological significance that are key to both weevil and plant evolutionary fitness and thus a component of their deeply intertwined macroevolutionary success.


Assuntos
Gorgulhos , Animais , Gorgulhos/genética , Polinização , Filogenia , Simbiose , Plantas , Flores
13.
Mol Ecol ; 32(7): 1791-1809, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626108

RESUMO

Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.


Assuntos
Evolução Biológica , Himenópteros , Animais , Himenópteros/genética , Insetos , Filogenia , Plantas/parasitologia , Genômica , Folhas de Planta/genética
14.
Microb Ecol ; 86(3): 2173-2182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154919

RESUMO

Insect-associated bacteria can mediate the intersection of insect and plant immunity. In this study, we aimed to evaluate the effects of single isolates or communities of gut-associated bacteria of Helicoverpa zea larvae on herbivore-induced defenses in tomato. We first identified bacterial isolates from the regurgitant of field-collected H. zea larvae by using a culture-dependent method and 16S rRNA gene sequencing. We identified 11 isolates belonging to the families Enterobacteriaceae, Streptococcaceae, Yersiniaceae, Erwiniaceae, and unclassified Enterobacterales. Seven different bacterial isolates, namely Enterobacteriaceae-1, Lactococcus sp., Klebsiella sp. 1, Klebsiella sp. 3, Enterobacterales, Enterobacteriaceae-2, and Pantoea sp., were selected based on their phylogenetic relationships to test their impacts on insect-induced plant defenses. We found that the laboratory population of H. zea larvae inoculated with individual isolates did not induce plant anti-herbivore defenses, whereas larvae inoculated with a bacterial community (combination of the 7 bacterial isolates) triggered increased polyphenol oxidase (PPO) activity in tomato, leading to retarded larval development. Additionally, field-collected H. zea larvae with an unaltered bacterial community in their gut stimulated higher plant defenses than the larvae with a reduced gut microbial community. In summary, our findings highlight the importance of the gut microbial community in mediating interactions between herbivores and their host plants.


Assuntos
Mariposas , Solanum lycopersicum , Humanos , Animais , Zea mays , Defesa das Plantas contra Herbivoria , Filogenia , RNA Ribossômico 16S/genética , Larva/microbiologia , Bactérias/genética , Enterobacteriaceae , Herbivoria
15.
Plant Cell Environ ; 45(10): 3036-3051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35924491

RESUMO

Potato, a cool-weather crop, emits volatile organic compounds (VOCs) which attract the specialist herbivore, Phthorimaea operculella, but also this herbivore's parasitic wasp, Trichogramma chilonis, an important biocontrol agent. What happens to this trophic system when heat stress challenges this agro-ecosystem? We studied how high temperature (HT) pre-treatments influence potato's VOC emissions and their subsequent effects on the preferences of insects, as evaluated in oviposition assays and Y-tube olfactometers. HT pre-stressed plants were less attractive to P. operculella adult moths, which were repelled by HT VOCs, but increased the recruitment of the parasitoid, T. chilonis, which were attracted. VOC emissions, including the most abundant constituent, ß-caryophyllene, were enhanced by HT treatments; some constituents elicited stronger behavioural responses than others. Transcripts of many genes in the biosynthetic pathways of these VOCs were significantly enhanced by HT treatment, suggesting increases in de novo biosynthesis. HT increased the plant's stomatal apertures, and exogenous applications of the hormone, ABA, known to suppress stomatal apertures, reduced leaf volatile emissions and affected the HT-altered plant attractions to both insects. From these results, we infer that HT stress affects this plant-insect interaction through its influence on VOC emissions, potentially decreasing herbivore ovipositions while increasing ovipositions of the parasitoid.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Vespas , Animais , Ecossistema , Feminino , Resposta ao Choque Térmico , Herbivoria , Plantas/metabolismo , Solanum tuberosum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia
16.
Proc Natl Acad Sci U S A ; 116(31): 15677-15685, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31320583

RESUMO

The hawkmoth Manduca sexta and one of its preferred hosts in the North American Southwest, Datura wrightii, share a model insect-plant relationship based on mutualistic and antagonistic life-history traits. D. wrightii is the innately preferred nectar source and oviposition host for M. sexta Hence, the hawkmoth is an important pollinator while the M. sexta larvae are specialized herbivores of the plant. Olfactory detection of plant volatiles plays a crucial role in the behavior of the hawkmoth. In vivo, the odorant receptor coreceptor (Orco) is an obligatory component for the function of odorant receptors (ORs), a major receptor family involved in insect olfaction. We used CRISPR-Cas9 targeted mutagenesis to knock out (KO) the MsexOrco gene to test the consequences of a loss of OR-mediated olfaction in an insect-plant relationship. Neurophysiological characterization revealed severely reduced antennal and antennal lobe responses to representative odorants emitted by D. wrightii In a wind-tunnel setting with a flowering plant, Orco KO hawkmoths showed disrupted flight orientation and an ablated proboscis extension response to the natural stimulus. The Orco KO gravid female displayed reduced attraction toward a nonflowering plant. However, more than half of hawkmoths were able to use characteristic odor-directed flight orientation and oviposit on the host plant. Overall, OR-mediated olfaction is essential for foraging and pollination behaviors, but plant-seeking and oviposition behaviors are sustained through additional OR-independent sensory cues.


Assuntos
Comportamento Alimentar/fisiologia , Proteínas de Insetos/metabolismo , Manduca/metabolismo , Oviposição/fisiologia , Receptores Odorantes/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Proteínas de Insetos/genética , Masculino , Manduca/genética , Receptores Odorantes/genética
17.
Proc Natl Acad Sci U S A ; 116(43): 21828-21833, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591212

RESUMO

Finding a suitable oviposition site is a challenging task for a gravid female moth. At the same time, it is of paramount importance considering the limited capability of most caterpillars to relocate to alternative host plants. The hawkmoth, Manduca sexta (Sphingidae), oviposits on solanaceous plants. Larvae hatching on a plant that is already attacked by conspecific caterpillars can face food competition, as well as an increased exposure to predators and induced plant defenses. Here, we show that feces from conspecific caterpillars are sufficient to deter a female M. sexta from ovipositing on a plant and that this deterrence is based on the feces-emitted carboxylic acids 3-methylpentanoic acid and hexanoic acid. Using a combination of genome editing (CRISPR-Cas9), electrophysiological recordings, calcium imaging, and behavioral analyses, we demonstrate that ionotropic receptor 8a (IR8a) is essential for acid-mediated feces avoidance in ovipositing hawkmoths.


Assuntos
Fezes/química , Oviposição/fisiologia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/fisiologia , Animais , Caproatos/metabolismo , Feminino , Mariposas/anatomia & histologia , Odorantes , Pentanos/metabolismo , Plantas
18.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499662

RESUMO

To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.


Assuntos
Afídeos , Vírus de Plantas , Animais , Afídeos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Vírus de Plantas/metabolismo , Plantas/metabolismo
19.
Genome ; 64(6): 615-626, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33825503

RESUMO

While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host-microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a "core" microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler-microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Microbiota/fisiologia , Filogenia , Salix/microbiologia , Animais , Biodiversidade , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Insetos , Larva , Reguladores de Crescimento de Plantas , Folhas de Planta , RNA Ribossômico 16S/genética
20.
Naturwissenschaften ; 108(3): 24, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34043088

RESUMO

Calcium oxalate (CaOx) crystals have challenged human curiosity since the advent of microscopy. These crystals are linked to the control of calcium levels in plant cells, but they have also been attributed several other functions, including protection against herbivory. However, the protection offered by CaOx crystals against herbivory may be overstated, as claims have been mainly based on their shapes and hard and indigestible nature rather than on experimental evidence. I contend that it is improbable that a constitutive defense, present since very early in the evolution of plants, has not been superseded by herbivores, especially insects. Here, I present arguments and evidence that suggest that these crystals have low efficiency in protecting plants against herbivores. First, I argue that insects with chewing mouthparts possess a semipermeable structure that protects their midgut, minimizing damage from crystals. Second, the action of CaOx crystals is purely mechanical and similar to other inert materials such as sand. Therefore, CaOx crystals only provide effective protection from herbivory in very particular cases and should not be considered an effective defense without supporting experimental evidence.


Assuntos
Oxalato de Cálcio/química , Herbivoria , Insetos/metabolismo , Plantas/química , Animais , Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA