Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2313921121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568968

RESUMO

Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of Ochroma) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.


Assuntos
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Genômica/métodos , Poliploidia , Cariótipo , Evolução Molecular
2.
Annu Rev Microbiol ; 74: 835-853, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32706633

RESUMO

Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast Saccharomyces cerevisiae. Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla-Ascomycota, Basidiomycota, and Mucoromycota.


Assuntos
Divisão Celular , Centrômero/genética , Centrômero/metabolismo , Evolução Molecular , Fungos/genética , Segregação de Cromossomos , Fungos/classificação , Heterocromatina/genética , Cariótipo , Cinetocoros/metabolismo , Interferência de RNA
3.
Chromosoma ; 132(4): 269-288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37322170

RESUMO

The average genome size (GS) of bats, which are the only mammals capable of powered flight, is approximately 18% smaller than that of closely related mammalian orders. The low nuclear DNA content of Chiroptera is comparable to that of birds, which are also characterized by a high metabolic rate. Only a few chiropteran taxa possess notable amounts of constitutive heterochromatin. Here, we studied the karyotypes of two non-related vesper bat species with unusually high amounts of constitutive heterochromatin: Hesperoptenus doriae and Philetor brachypterus. Conventional staining methods and whole-chromosome painting with probes derived from Myotis myotis (2n = 44), showing a karyotype close to that of the presumed ancestor of Vespertilionidae, revealed Robertsonian fusions as the main type of rearrangement leading to the exceptionally reduced diploid chromosome number of 2n = 26 in both species. Moreover, both karyotypes are characterized by large blocks of pericentromeric heterochromatin composed of CMA-positive and DA-DAPI-positive segments. In H. doriae, the heterochromatin accumulation has resulted in a genome size of 3.22 pg (1C), which is 40% greater than the mean genome size for the family. For P. brachypterus, a genome size of 2.94 pg was determined, representing an increase of about 28%. Most notably, in H. doriae, the presence of additional constitutive heterochromatin correlates with an extended mitotic cell cycle duration in vitro. A reduction in diploid chromosome number to 30 or lower is discussed as a possible cause of the accumulation of pericentromeric heterochromatin in Vespertilionidae.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Heterocromatina/genética , Tamanho do Genoma , Bandeamento Cromossômico , Cariotipagem
4.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625089

RESUMO

Determining the functional consequences of karyotypic changes is invariably challenging because evolution tends to obscure many of its own footprints, such as accumulated mutations, recombination events, and demographic perturbations. Here, we describe the assembly of a chromosome-level reference genome of the gayal (Bos frontalis) thereby revealing the structure, at base-pair-level resolution, of a telo/acrocentric-to-telo/acrocentric Robertsonian translocation (2;28) (T/A-to-T/A rob[2;28]). The absence of any reduction in the recombination rate or genetic introgression within the fusion region of gayal served to challenge the long-standing view of a role for fusion-induced meiotic dysfunction in speciation. The disproportionate increase noted in the distant interactions across pro-chr2 and pro-chr28, and the change in open-chromatin accessibility following rob(2;28), may, however, have led to the various gene expression irregularities observed in the gayal. Indeed, we found that many muscle-related genes, located synthetically on pro-chr2 and pro-chr28, exhibited significant changes in expression. This, combined with genome-scale structural variants and expression alterations in genes involved in myofibril composition, may have driven the rapid sarcomere adaptation of gayal to its rugged mountain habitat. Our findings not only suggest that large-scale chromosomal changes can lead to alterations in genome-level expression, thereby promoting both adaptation and speciation, but also illuminate novel avenues for studying the relationship between karyotype evolution and speciation.


Assuntos
Cromatina , Genoma , Animais , Bovinos
5.
Cytogenet Genome Res ; : 1-11, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815552

RESUMO

INTRODUCTION: Rhipidomys is the second most specious and the most widespread genus of the tribe Thomasomyini. Chromosomal data have been an important tool in the taxonomy of the group that presents low variability of diploid number (2n) and highly variable fundamental numbers (FNs). Despite such diversity, the genus has been studied mainly by classical and banding cytogenetic techniques. METHODS: This study performed a comparative study between R. emiliae (2n = 44, FN = 52), R. macrurus (2n = 44, FN = 49), R. nitela (2n = 50, FN = 71), and R. mastacalis (2n = 44, FN = 72) using chromosome painting probes of two Oryzomyini species. RESULTS: Our analysis revealed pericentric inversion as the main rearrangement involved in the karyotype evolution of the group, although tandem fusions/fissions were also detected. In addition, we detected eight syntenic associations exclusive of the genus Rhipidomys, and three syntenic associations shared between species of the tribe Thomasomyini and Oryzomyini. CONCLUSION: Comparative cytogenetic analysis by ZOO-FISH on genus Rhipidomys supports a pattern of chromosomal rearrangement already suggested by comparative G-banding. However, the results suggest that karyotype variability in the genus could also involve the occurrence of an evolutionary new centromere.

6.
Genetica ; 152(1): 51-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381186

RESUMO

Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.


Assuntos
Chamaecrista , Fabaceae , Filogenia , Chamaecrista/genética , Fabaceae/genética , Cromossomos de Plantas/genética , Genoma de Planta , Cariótipo , Poliploidia , DNA Ribossômico/genética
7.
Chromosome Res ; 31(1): 2, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662301

RESUMO

Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.


Assuntos
Borboletas , Animais , Borboletas/genética , Madeira , Mapeamento Cromossômico , Genoma , Sintenia , Cromossomos Sexuais , Evolução Molecular
8.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223491

RESUMO

Karyotype refers to the configuration of the genome into a set of chromosomes. The karyotype difference between species is expected to impede various biological processes, such as chromosome segregation and meiotic chromosome pairing, potentially contributing to incompatibility. Karyotypes can rapidly change between closely related species and even among populations of the same species. However, the forces driving karyotype evolution are poorly understood. Here we describe a unique karyotype of a Drosophila melanogaster strain isolated from the Seychelles archipelago. This strain has lost the ribosomal DNA (rDNA) locus on the X chromosome. Because the Y chromosome is the only other rDNA-bearing chromosome, all females carry at least one Y chromosome as the source of rDNA. Interestingly, we found that the strain also carries a truncated Y chromosome (YS) that is stably maintained in the population despite its inability to support male fertility. Our modeling and cytological analysis suggest that the Y chromosome has a larger negative impact on female fitness than the YS chromosome. Moreover, we generated an independent strain that lacks X rDNA and has a karyotype of XXY females and XY males. This strain quickly evolved multiple karyotypes: two new truncated Y chromosomes (similar to YS), as well as two independent X chromosome fusions that contain the Y-derived rDNA fragment, eliminating females' dependence on the Y chromosome. Considering that Robertsonian fusions frequently occur at rDNA loci in humans, we propose that rDNA loci instability may be one of driving forces of karyotype evolution.


Assuntos
Drosophila melanogaster , Cromossomo Y , Animais , Masculino , Feminino , Humanos , DNA Ribossômico/genética , Drosophila melanogaster/genética , Cariótipo , Cromossomo Y/genética , Cromossomo X/genética
9.
Proc Natl Acad Sci U S A ; 117(14): 7917-7928, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193338

RESUMO

A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.


Assuntos
Centrômero/genética , Criptococose/genética , Cryptococcus neoformans/genética , Isolamento Reprodutivo , Sistemas CRISPR-Cas/genética , Instabilidade Cromossômica/genética , Cromossomos/genética , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Quebras de DNA de Cadeia Dupla , Genoma Fúngico/genética , Genômica , Humanos , Translocação Genética/genética
10.
BMC Biol ; 20(1): 216, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195948

RESUMO

BACKGROUND: Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS: Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS: Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.


Assuntos
Buxus , Magnoliopsida , Buxus/genética , Evolução Molecular , Genoma de Planta , Cariótipo , Magnoliopsida/genética , Filogenia
11.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835543

RESUMO

In mammals, centromeres are epigenetically specified by the histone H3 variant CENP-A and are typically associated with satellite DNA. We previously described the first example of a natural satellite-free centromere on Equus caballus chromosome 11 (ECA11) and, subsequently, on several chromosomes in other species of the genus Equus. We discovered that these satellite-free neocentromeres arose recently during evolution through centromere repositioning and/or chromosomal fusion, after inactivation of the ancestral centromere, where, in many cases, blocks of satellite sequences were maintained. Here, we investigated by FISH the chromosomal distribution of satellite DNA families in Equus przewalskii (EPR), demonstrating a good degree of conservation of the localization of the major horse satellite families 37cen and 2PI with the domestic horse. Moreover, we demonstrated, by ChIP-seq, that 37cen is the satellite bound by CENP-A and that the centromere of EPR10, the ortholog of ECA11, is devoid of satellite sequences. Our results confirm that these two species are closely related and that the event of centromere repositioning which gave rise to EPR10/ECA11 centromeres occurred in the common ancestor, before the separation of the two horse lineages.


Assuntos
Proteína Centromérica A , Centrômero , DNA Satélite , Cavalos , Animais , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cavalos/genética
12.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909141

RESUMO

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genética
13.
Chromosoma ; 130(1): 15-25, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443586

RESUMO

Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/química , Araceae/classificação , Araceae/crescimento & desenvolvimento , Cariotipagem , Sondas de Oligonucleotídeos/genética , Filogenia , Especificidade da Espécie
14.
Mol Biol Evol ; 38(3): 856-875, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32966576

RESUMO

Chromosome rearrangements are arguably the most dramatic type of mutations, often leading to rapid evolution and speciation. However, chromosome dynamics have only been studied at the sequence level in a small number of model systems. In insects, Diptera and Lepidoptera have conserved genome structure at the scale of whole chromosomes or chromosome arms. Whether this reflects the diversity of insect genome evolution is questionable given that many species exhibit rapid karyotype evolution. Here, we investigate chromosome evolution in aphids-an important group of hemipteran plant pests-using newly generated chromosome-scale genome assemblies of the green peach aphid (Myzus persicae) and the pea aphid (Acyrthosiphon pisum), and a previously published assembly of the corn-leaf aphid (Rhopalosiphum maidis). We find that aphid autosomes have undergone dramatic reorganization over the last 30 My, to the extent that chromosome homology cannot be determined between aphids from the tribes Macrosiphini (Myzus persicae and Acyrthosiphon pisum) and Aphidini (Rhopalosiphum maidis). In contrast, gene content of the aphid sex (X) chromosome remained unchanged despite rapid sequence evolution, low gene expression, and high transposable element load. To test whether rapid evolution of genome structure is a hallmark of Hemiptera, we compared our aphid assemblies with chromosome-scale assemblies of two blood-feeding Hemiptera (Rhodnius prolixus and Triatoma rubrofasciata). Despite being more diverged, the blood-feeding hemipterans have conserved synteny. The exceptional rate of structural evolution of aphid autosomes renders them an important emerging model system for studying the role of large-scale genome rearrangements in evolution.


Assuntos
Afídeos/genética , Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Cromossomo X , Animais , Elementos de DNA Transponíveis , Feminino , Masculino , Sintenia
15.
BMC Plant Biol ; 22(1): 599, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539690

RESUMO

BACKGROUND: Karyotype dynamics driven by chromosomal rearrangements has long been considered as a fundamental question in the evolutionary genetics. Saccharum spontaneum, the most primitive and complex species in the genus Saccharum, has reportedly undergone at least two major chromosomal rearrangements, however, its karyotypic evolution remains unclear. RESULTS: In this study, four representative accessions, i.e., hypothetical diploid sugarcane ancestor (sorghum, x = 10), Sa. spontaneum Np-X (x = 10, tetraploid), 2012-46 (x = 9, hexaploid) and AP85-441 (x = 8, tetraploid), were selected for karyotype evolution studies. A set of oligonucleotide (oligo)-based barcode probes was developed based on the sorghum genome, which allowed universal identification of all chromosomes from sorghum and Sa. spontaneum. By comparative FISH assays, we reconstructed the karyotype evolutionary history and discovered that although chromosomal rearrangements resulted in greater variation in relative lengths of some chromosomes, all chromosomes maintained a conserved metacentric structure. Additionally, we found that the barcode oligo probe was not applicable for chromosome identification in both Sa. robustum and Sa. officinarum species, suggesting that sorghum is more distantly related to Sa. robustum and Sa. officinarum compared with Sa. spontaneum species. CONCLUSIONS: Our study demonstrated that the barcode oligo-FISH is an efficient tool for chromosome identification and karyotyping research, and expanded our understanding of the karyotypic and chromosomal evolution in the genus Saccharum.


Assuntos
Saccharum , Saccharum/genética , Tetraploidia , Cariótipo , Cariotipagem , Diploide , Grão Comestível/genética
16.
Cytogenet Genome Res ; 162(11-12): 657-664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37054691

RESUMO

Cytogenetic studies demonstrated that unstable chromosomal sites in armored catfishes (Loricariidae) triggered intense karyotypic diversification, mainly derived from Robertsonian rearrangements. In Loricariinae, the presence of ribosomal DNA (rDNA) clusters and their flanking repeated regions (such as microsatellites or partial transposable element sequences) was proposed to facilitate chromosomal rearrangements. Hence, this study aimed to characterize the numerical chromosomal polymorphism observed in Rineloricaria pentamaculata and evaluate the chromosomal rearrangements which originated diploid chromosome number (2n) variation, from 56 to 54. Our data indicate a centric fusion event between acrocentric chromosomes of pairs 15 and 18, bearing 5S rDNA sites on their short (p) arms. This chromosome fusion established the numerical polymorphism, decreasing the 2n from original 56 (karyomorph A) to 55 in karyomorph B and 54 in karyomorph C. Although vestiges of telomeric sequences were evidenced at the fusion point, no 5S rDNA was detected in this region. The acrocentric chromosomes involved in the origin of the fusion were enriched with (CA)n and (GA)n microsatellites. Repetitive sequences in the acrocentric chromosomes subtelomeres have facilitated the rearrangement. Our study thus reinforces the view on the important role of particular repetitive DNA classes in promoting chromosome fusions which frequently drive Rineloricaria karyotype evolution.

17.
Genome ; 65(9): 479-489, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35939838

RESUMO

Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) were clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposons, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in R. latirostris rather than working as a double-strand breakpoint site.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Mapeamento Cromossômico/métodos , Cromossomos , Elementos de DNA Transponíveis , DNA Ribossômico/genética , Evolução Molecular , Repetições de Microssatélites , RNA Ribossômico 5S/genética
18.
Mol Biol Rep ; 49(11): 10279-10292, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097123

RESUMO

BACKGROUND: This study on cultivars of melon (Cucumis melo L.) marketed in Brazil was conducted to obtain information to be used in breeding programs of this species. Little is known about the karyotype variability among C. melo L. cultivars targeted at the consumer market. The objective of the present study was to verify the karyotype variability in eight commercial melon cultivars used in the Brazilian market. METHODS AND RESULTS: Slides were stained with 2% Giemsa and assembled with Neomount to perform chromosomal morphometry. GC-rich heterochromatin was observed by CMA3/DAPI staining. 5 S rDNA, centromeric satellite DNA (SatDNA), and telomeric sites were visualized using fluorescence in situ hybridization. All images were captured on an Olympus BX41 microscope equipped with a 5 M Olympus DP25 digital camera and DP2-BSW software. The cultivars showed symmetrical karyotypes with significant differences in total chromosome length and average chromosome size. Heterochromatic CMA3+ blocks were observed in terminal regions related to satellites (secondary constrictions), as well as in centromeric and pericentromeric regions. A single chromosomal pair of 5 S rDNA sites was observed in all cultivars, but at distinct locations. Centromeric satellite sequences, tested for the first time in melon, revealed only centromeric sites. Telomeric sites were observed in all the chromosomes of the cultivars. CONCLUSIONS: Karyotype variation was observed in cultivars of melon, which were analyzed for chromosomal morphology and localization of GC-rich heterochromatin, as well centromeric SatDNA, rDNA, and telomeric chromosomal markers. Hence, these cultivars can be used in future breeding programs.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Hibridização in Situ Fluorescente , Heterocromatina/genética , Cucurbitaceae/genética , Melhoramento Vegetal , Cariotipagem , DNA Satélite , DNA Ribossômico/genética
19.
Mol Biol Rep ; 49(9): 8785-8799, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809181

RESUMO

BACKGROUND: Cestrum species present large genomes (2 C = ~ 24 pg), a high occurrence of B chromosomes and great diversity in heterochromatin bands. Despite this diversity, karyotypes maintain the chromosome number 2n = 16 (except when they present B chromosomes), and a relative similarity in chromosome morphology and symmetry. To deepen our knowledge of the Cestrum genome composition, low-coverage sequencing data of C. strigilatum and C. elegans were compared, including cytogenomic analyses of seven species. METHODS AND RESULTS: Bioinformatics analyses showed retrotransposons comprising more than 70% of the repetitive fraction, followed by DNA transposons (~ 17%), but FISH assays using retrotransposon probes revealed inconspicuous and scattered signals. The four satellite DNA families here analyzed represented approximately 2.48% of the C. strigilatum dataset, and these sequences were used as probes in FISH assays. Hybridization signals were colocalized with all AT- and GC-rich sequences associated with heterochromatin, including AT-rich Cold-Sensitive Regions (CSRs). Although satellite probes hybridized in almost all tested species, a satDNA family named CsSat49 was highlighted because it predominates in centromeric regions. CONCLUSIONS: Data suggest that the satDNA fraction is conserved in the genus, although there is variation in the number of FISH signals between karyotypes. Except to the absence of FISH signals with probes CsSat1 and CsSat72 in two species, the other satellites occurred in species of different phylogenetic clades. Some satDNA sequences have been detected in the B chromosomes, indicating that they are rich in preexisting sequences in the chromosomes of the A complement. This comparative study provides an important advance in the knowledge on genome organization and heterochromatin composition in Cestrum, especially on the distribution of satellite fractions between species and their importance for the B chromosome composition.


Assuntos
Cestrum , Solanaceae , Animais , Caenorhabditis elegans/genética , Cestrum/genética , DNA Satélite/genética , Heterocromatina/genética , Filogenia , Retroelementos/genética , Solanaceae/genética
20.
Parasitology ; 149(8): 1094-1105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535487

RESUMO

Caryophyllideans are intestinal parasites of freshwater fishes, occupying a basal position among the 'true' tapeworms. We performed detailed cytogenetic analyses of the well-known caryophyllidean species Caryophyllaeus laticeps. For comparison, we also examined for the first time the chromosomes of Paracaryophyllaeus gotoi, a specific parasite of loaches in China. Both species showed a diploid chromosome number of 2n = 20, n = 10m. Chromomycin A3 (CMA3)/diamidino-2-phenylindole (DAPI) staining performed for the first time in the class Cestoda revealed CMA3+/DAPI− bands in the pericentromeric regions of the short arms of chromosome pair no. 7 in the karyotype of C. laticeps. Fluorescence in situ hybridization with the 18S rDNA probe confirmed the presence of a single cluster of major rDNA near the centromere on a pair of small chromosomes in both species. These findings support the hypothesis that the ancestral state in the family Caryophyllaeidae is a single interstitial cluster of major rDNA genes and thus one nucleolar organizer region per haploid genome. Our results, which we presented together with literature data plotted on a phylogenetic tree, show stability of caryophyllidean karyotypes at the genus level, but showed differences between genera without a clear phylogenetic signal. The data allowed us to at least formulate a hypothesis about the ancestral haploid chromosome number of n = 10 for the family Caryophyllaeidae and possibly for the sister family Capingentidae. In addition, we compared two populations of C. laticeps from water bodies with different levels of polychlorinated biphenyl contamination, showing a slightly increased incidence of chromosomal abnormalities at the contaminated site.


Assuntos
Cestoides , Cipriniformes , Parasitos , Animais , Cestoides/genética , Análise Citogenética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Cariótipo , Parasitos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA