Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785337

RESUMO

Predators are not perfect, as some of their prey capture attempts result in failure. Successful attempts may be partly due to predators modulating their capture kinematics in relation to variation in the visual cues of the prey to increase the probability of success. In praying mantises, which have been suggested to possess stereoscopic vision, variation in prey distance has been shown to elicit variation in the probability of an attempt. However, it remains to be examined whether variation in prey distance results in mantises modulating their attempt to successfully capture prey. The goals of this study were to examine these relationships using the praying mantis system. Using 11 adult female Sphodromantis lineola, we recorded 192 prey capture attempts at 1000 Hz with two cameras to examine the 3D kinematics of successful and unsuccessful prey capture attempts. Using a combination of principal component analysis (PCA) and logistic regression, our results show that as prey distance increases, mantises adjust through greater and faster expansion of the forelegs and body (PC1), which significantly predicts capture success. However, PC1 only explains 22% of the variation in all prey capture attempts, suggesting that the other components may be related to additional aspects of the prey. Our results suggest that the distances at which mantises prefer to attempt to capture prey may be the result of their greater probability of successfully capturing the prey. These results highlight the range of motions mantises use when attempting to capture prey, suggesting flexibility in their prey capture attempts in relation to prey position.


Assuntos
Mantódeos , Comportamento Predatório , Fenômenos Biomecânicos , Animais , Feminino , Mantódeos/fisiologia , Análise de Componente Principal , Modelos Logísticos
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389671

RESUMO

Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.


Assuntos
Crustáceos/fisiologia , Transferência de Energia , Atividade Motora/fisiologia , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Robótica
3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475226

RESUMO

The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp's unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry-Pérot (FP) resonator filter array. The design incorporates a composite thin film structure comprising metal and dielectric layers as the reflector of the resonant cavity. The resulting metal-dielectric composite film FP resonator extends the operating bandwidth to cover both visible and infrared regions, specifically spanning a broader range from 450 nm to 900 nm. Furthermore, within this operational bandwidth, the metal-dielectric composite film FP resonator demonstrates an average peak transmittance exceeding 60%, representing a notable improvement over the metallic resonator. Additionally, aluminum-based metallic grating arrays are incorporated beneath the FP filter array to capture polarization information. This innovative approach enables the simultaneous acquisition of spectrum and polarization information using a single sensor device. The outcomes of this research hold promise for advancing the development of high-performance, multifunctional optical sensors, thereby unlocking new possibilities in the field of optical information acquisition.

4.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794027

RESUMO

The dependable functioning of switchgear is essential to maintain the stability of power supply systems. Partial discharge (PD) is a critical phenomenon affecting the insulation of switchgear, potentially leading to equipment failure and accidents. PDs are generally grouped into metal particle discharge, suspended discharge, and creeping discharge. Different types of PDs are closely related to the severity of a PD. Partial discharge pattern recognition (PDPR) plays a vital role in the early detection of insulation defects. In this regard, a Back Propagation Neural Network (BPNN) for PDPR in switchgear is proposed in this paper. To eliminate the sensitivity to initial values of BPNN parameters and to enhance the generalized ability of the proposed BPRN, an improved Mantis Search Algorithm (MSA) is proposed to optimize the BPNN. The improved MSA employs some boundary handling strategies and adaptive parameters to enhance the algorithm's efficiency in optimizing the network parameters of BPNN. Principal Component Analysis (PCA) is introduced to reduce the dimensionality of the feature space to achieve significant time saving in comparable recognition accuracy. The initially extracted 14 feature values are reduced to 7, reducing the BPNN parameter count from 183 with 14 features to 113 with 7 features. Finally, numerical results are presented and compared with Decision Tree (DT), k-Nearest Neighbor classifiers (KNN), and Support Vector Machine (SVM). The proposed method in this paper exhibits the highest recognition accuracy in metal particle discharge and suspended discharge.

5.
Am J Hum Genet ; 106(5): 659-678, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386536

RESUMO

Access to large-scale genomics datasets has increased the utility of hypothesis-free genome-wide analyses. However, gene signals are often insufficiently powered to reach experiment-wide significance, triggering a process of laborious triaging of genomic-association-study results. We introduce mantis-ml, a multi-dimensional, multi-step machine-learning framework that allows objective assessment of the biological relevance of genes to disease studies. Mantis-ml is an automated machine-learning framework that follows a multi-model approach of stochastic semi-supervised learning to rank disease-associated genes through iterative learning sessions on random balanced datasets across the protein-coding exome. When applied to a range of human diseases, including chronic kidney disease (CKD), epilepsy, and amyotrophic lateral sclerosis (ALS), mantis-ml achieved an average area under curve (AUC) prediction performance of 0.81-0.89. Critically, to prove its value as a tool that can be used to interpret exome-wide association studies, we overlapped mantis-ml predictions with data from published cohort-level association studies. We found a statistically significant enrichment of high mantis-ml predictions among the highest-ranked genes from hypothesis-free cohort-level statistics, indicating a substantial improvement over the performance of current state-of-the-art methods and pointing to the capture of true prioritization signals for disease-associated genes. Finally, we introduce a generic mantis-ml score (GMS) trained with over 1,200 features as a generic-disease-likelihood estimator, outperforming published gene-level scores. In addition to our tool, we provide a gene prioritization atlas that includes mantis-ml's predictions across ten disease areas and empowers researchers to interactively navigate through the gene-triaging framework. Mantis-ml is an intuitive tool that supports the objective triaging of large-scale genomic discovery studies and enhances our understanding of complex genotype-phenotype associations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Epilepsia/genética , Genômica/métodos , Insuficiência Renal Crônica/genética , Aprendizado de Máquina Supervisionado , Animais , Área Sob a Curva , Aprendizado Profundo , Modelos Animais de Doenças , Exoma/genética , Estudos de Associação Genética , Humanos , Camundongos , Redes Neurais de Computação , Curva ROC , Reprodutibilidade dos Testes , Processos Estocásticos
6.
Genetica ; 151(6): 339-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831421

RESUMO

The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Crustáceos/genética , Crustáceos/metabolismo
7.
J Food Sci Technol ; 59(5): 1812-1822, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531420

RESUMO

Changes in physicochemical, textural, microbial, and sensory quality of harpiosquillid mantis shrimp (Harpiosquilla raphidea) (HMS) during 10 days of iced storage were studied. Weight and cooking losses were increased during storage (p < 0.05). Drastic decrease in myosin heavy chain was found after 2 days of storage. Increases in total volatile basic nitrogen, trimethylamine, peroxide value, and thiobarbituric acid reactive substances with coincidentally augmented pH were found during the storage (p < 0.05). For microbiological analyses, total viable counts exceeded the limit at day 6. Melanosis score increased with a decreased L* value as storage time increased. Rapid decreases in hardness, springiness, cohesiveness, gumminess, and chewiness were associated with pasty and softened texture, which was supported by looser arrangement of muscle fiber along with gapping. This was reconfirmed by lowered shear force. Based on the quality evaluation, HMS could maintain the freshness and quality for not longer than 2 days in ice.

8.
J Struct Biol ; 213(4): 107810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774752

RESUMO

Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.


Assuntos
Estruturas Animais/metabolismo , Biomineralização/fisiologia , Crustáceos/metabolismo , Minerais/metabolismo , Estruturas Animais/química , Estruturas Animais/ultraestrutura , Animais , Carbonato de Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Crustáceos/química , Crustáceos/ultraestrutura , Decápodes/química , Decápodes/metabolismo , Decápodes/ultraestrutura , Microanálise por Sonda Eletrônica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Comportamento Predatório/fisiologia , Espectrometria por Raios X/métodos , Análise Espectral Raman/métodos
9.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914038

RESUMO

Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s-2, 292.7 rad s-1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults - even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s-1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms.


Assuntos
Crustáceos , Mantódeos , Animais , Fenômenos Biomecânicos , Larva , Movimento
10.
Biol Lett ; 17(1): 20200811, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465328

RESUMO

Sexual conflict can generate coercive traits in males that enhance mating success at the expense of female fitness. Pre-copulatory sexual cannibalism-where females consume males without mating-typically favours cautious rather than coercive mating tactics, and few examples of the latter are known. Here, we show that males of the highly cannibalistic springbok mantis, Miomantis caffra, wrestle females during pre-mating interactions. We find that most initial contacts between males and females involve a violent struggle whereby each sex tries be the first to grasp hold of the other with their raptorial forelegs. When females win the struggle, they always cannibalize males. However, when males grasp females first, they dramatically increase the chance of mating. We also find striking evidence that, on some occasions, males wound females with their fore-tibial claws during struggles, resulting in haemolymph loss and scar tissue formation. Taken together, our results show how males can overcome the threat of cannibalism by coercively wrestling females. We argue that pre-copulatory injury in this species is likely to be a negative pleiotropic side-effect of coercive mating behaviour and foraging morphology.


Assuntos
Canibalismo , Mantódeos , Animais , Coerção , Copulação , Feminino , Masculino , Comportamento Sexual Animal
11.
Am Nat ; 196(2): 216-226, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32673090

RESUMO

Species that are Batesian mimics during postembryonic development shift between mimetic models as they grow in size. However, it has not yet been tested whether these successive mimetic phenotypes are similarly protected from predators. Early-instar phenotypes could represent an inaccurate phenotype or an accurate phenotype because of selection from different predators. Here, we tested the hypotheses of transformational Batesian mimicry in the ant-mimicking jumping spider Leptochestes berolinensis. We quantified the mimetic accuracy of different ontogenetic stages to potential ant models by using a multitrait approach. We measured movement, body profile, body size, and coloration. Analysis revealed adults to be more accurate mimics than juveniles. Adults were similar to smaller morphs of Camponotus or Lasius ants, whereas juveniles were more similar to Lasius and Colobopsis ants. We tested whether predators, mantises, and Pisaura spiders were deceived by mimics after having experience with ant models. These predators never captured any ant or a mimic but always captured the nonmyrmecomorphic spider. We conclude that L. berolinensis is a Batesian mimic of ants undergoing transformational mimicry, with all stages being accurate mimics.


Assuntos
Mimetismo Biológico , Comportamento Predatório , Aranhas/anatomia & histologia , Aranhas/crescimento & desenvolvimento , Animais , Formigas , Comportamento Animal , Tamanho Corporal , Cor , Feminino , Masculino , Mantódeos , Fenótipo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32088748

RESUMO

Praying mantids are the only insects proven to have stereoscopic vision (stereopsis): the ability to perceive depth from the slightly shifted images seen by the two eyes. Recently, the first neurons likely to be involved in mantis stereopsis were described and a speculative neuronal circuit suggested. Here we further investigate classes of neurons in the lobula complex of the praying mantis brain and their tuning to stereoscopically-defined depth. We used sharp electrode recordings with tracer injections to identify visual projection neurons with input in the optic lobe and output in the central brain. In order to measure binocular response fields of the cells the animals watched a vertical bar stimulus in a 3D insect cinema during recordings. We describe the binocular tuning of 19 neurons projecting from the lobula complex and the medulla to central brain areas. The majority of neurons (12/19) were binocular and had receptive fields for both eyes that overlapped in the frontal region. Thus, these neurons could be involved in mantis stereopsis. We also find that neurons preferring different contrast polarity (bright vs dark) tend to be segregated in the mantis lobula complex, reminiscent of the segregation for small targets and widefield motion in mantids and other insects.


Assuntos
Encéfalo/fisiologia , Percepção de Profundidade , Mantódeos/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Visão Binocular , Campos Visuais , Animais , Encéfalo/citologia , Potenciais Evocados Visuais , Mantódeos/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Estimulação Luminosa , Vias Visuais/fisiologia
13.
J Anim Ecol ; 89(7): 1581-1592, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424913

RESUMO

Allee effects occur when individual or population survival decreases due to populations being small or sparse. A key mechanism underlying Allee effects is difficulty in finding mates at low densities. Species may be particularly vulnerable to mate-finding Allee effects if females rely on an abundance of males to reproduce successfully. In sexually cannibalistic species, females may consume males before or after copulation, potentially reducing the supply of males to the point where a mate-finding Allee effect occurs. In this study, we investigate the extent to which sexual cannibalism can modulate mate-finding Allee effects, and the conditions under which sexual cannibalism is likely to be particularly detrimental to population viability. We created an individual-based model that tracked specific females throughout the breeding season and used extinction risk and per capita growth rate to measure the strength of the Allee effects. We varied both founder population size and mate encounter rate independently of each other to expose the mechanism driving the Allee effects. We also analysed how cannibalism-derived female fecundity benefits affected extinction risk. We found that sexual cannibalism could lead to high extinction risk, particularly when cannibalism occurred before copulation, founder population size was small and mate encounter rates were low. However, post-copulatory cannibalism reduced extinction risk, if cannibalism increased female fecundity enough. We found that there were strong threshold effects, in which small changes in encounter rate could strongly alter population extinction risk. We find that sexual cannibalism is likely to negatively impact population survival as population size and mate encounter rate decrease. This may be exacerbated if male quality declines and female hunger increases in declining populations. As many top invertebrate predators, such as spiders and mantises, are sexually cannibalistic, this may have ecosystem-wide impacts. We also suggest that other reproductive behaviours, such as rejecting all but high-quality mates or requiring multiple mates to ensure fertility, are also likely to cause mate-finding Allee effects when habitat quality degrades.


Assuntos
Canibalismo , Aranhas , Animais , Ecossistema , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
14.
Biol Lett ; 16(5): 20200098, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32396788

RESUMO

Predators must often employ flexible strategies to capture prey. Particular attention has been given to the strategies of visual predators that actively pursue their prey, but sit-and-wait predators have been largely overlooked, their strategies often characterized as stereotyped. Praying mantids are primarily sit-and-wait predators that often employ crypsis to catch their prey using a raptorial strike produced by their highly modified forelimbs. Here, we show that the raptorial strike of the Madagascan marbled mantis (Polyspilota aeruginosa) varies in duration from 60 to 290 ms due to the tibial extension alone; slower strikes involve slower tibial extensions that may also be interrupted by a pause. The success of a strike is independent of its duration or the presence of these pauses. However, prey speed affects the duration of tibial extension and the probability of a pause occurring, both increasing at slower prey speeds. Adjusting the duration of the tibial extension according to prey speed allows mantids to time the final downward sweep of the tibia to their prey's approach. The use of visual inputs to adjust the motor pattern controlling forelimb movements shows that not all aspects of the strike are stereotyped and that sit-and-wait predators can produce behavioural flexibility.


Assuntos
Mantódeos , Comportamento Predatório , Animais
15.
J Exp Biol ; 222(Pt 11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31064852

RESUMO

Perceiving motion-in-depth is essential to detecting approaching or receding objects, predators and prey. This can be achieved using several cues, including binocular stereoscopic cues such as changing disparity and interocular velocity differences, and monocular cues such as looming. Although these have been studied in detail in humans, only looming responses have been well characterized in insects and we know nothing about the role of stereoscopic cues and how they might interact with looming cues. We used our 3D insect cinema in a series of experiments to investigate the role of the stereoscopic cues mentioned above, as well as looming, in the perception of motion-in-depth during predatory strikes by the praying mantis Sphodromantis lineola Our results show that motion-in-depth does increase the probability of mantis strikes but only for the classic looming stimulus, an expanding luminance edge. Approach indicated by radial motion of a texture or expansion of a motion-defined edge, or by stereoscopic cues, all failed to elicit increased striking. We conclude that mantises use stereopsis to detect depth but not motion-in-depth, which is detected via looming.


Assuntos
Percepção de Profundidade , Mantódeos/fisiologia , Percepção de Movimento , Animais , Sinais (Psicologia) , Feminino , Comportamento Predatório/fisiologia , Percepção Visual
16.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068672

RESUMO

Stomatopod crustaceans are renowned for their elaborate visual systems. Their eyes contain a plethora of photoreceptors specialized for chromatic and polarization detection, including several that are sensitive to varying wavelength ranges and angles of polarization within the ultraviolet (UV) range (less than 400 nm). Behavioural experiments have previously suggested that UV photoreception plays a role in stomatopod communication, but these experiments have only manipulated the entire UV range. Here, using a behavioural approach, we examine UV vision in the stomatopod Haptosquilla trispinosa Using binary trained choice assays as well as innate burrow-choice experiments, we assessed the ability of H. trispinosa to detect and respond to narrow-band LED stimuli peaking near 314 nm (UVB) versus 379 nm (UVA) in wavelength. We find that H. trispinosa can discriminate these stimuli and appears to display an aversive reaction to UVB light, suggesting segregated behavioural responses to stimuli within the UV range. Furthermore, we find that H. trispinosa can discriminate stimuli peaking near 379 nm versus 351 nm in wavelength, suggesting that their wavelength discrimination in the UV is comparable to their performance in the human-visible range.


Assuntos
Comportamento Animal/efeitos da radiação , Decápodes/fisiologia , Raios Ultravioleta , Animais , Comportamento de Escolha/fisiologia , Visão Ocular/fisiologia
17.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343603

RESUMO

Safe and effective conflict resolution is critical for survival and reproduction. Theoretical models describe how animals resolve conflict by assessing their own and/or their opponent's ability (resource holding potential, RHP), yet experimental tests of these models are often inconclusive. Recent reviews have suggested this uncertainty could be alleviated by using multiple approaches to test assessment models. The mantis shrimp Neogonodactylus bredini presents visual displays and ritualistically exchanges high-force strikes during territorial contests. We tested how N. bredini contest dynamics were explained by any of three assessment models-pure self-assessment, cumulative assessment and mutual assessment-using correlations and a novel, network analysis-based sequential behavioural analysis. We staged dyadic contests over burrow access between competitors matched either randomly or based on body size. In both randomly and size-matched contests, the best metric of RHP was body mass. Burrow residency interacted with mass to predict outcome. Correlations between contest costs and RHP rejected pure self-assessment, but could not fully differentiate between cumulative and mutual assessment. The sequential behavioural analysis ruled out cumulative assessment and supported mutual assessment. Our results demonstrate how multiple analyses provide strong inference to tests of assessment models and illuminate how individual behaviours constitute an assessment strategy.


Assuntos
Crustáceos/fisiologia , Territorialidade , Agressão , Animais , Comportamento Competitivo , Feminino , Masculino , Modelos Biológicos
18.
Proc Biol Sci ; 284(1847)2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28100817

RESUMO

The influence of biophysical relationships on rates of morphological evolution is a cornerstone of evolutionary theory. Mechanical sensitivity-the correlation strength between mechanical output and the system's underlying morphological components-is thought to impact the evolutionary dynamics of form-function relationships, yet has rarely been examined. Here, we compare the evolutionary rates of the mechanical components of the four-bar linkage system in the raptorial appendage of mantis shrimp (Order Stomatopoda). This system's mechanical output (kinematic transmission (KT)) is highly sensitive to variation in its output link, and less sensitive to its input and coupler links. We found that differential mechanical sensitivity is associated with variation in evolutionary rate: KT and the output link exhibit faster rates of evolution than the input and coupler links to which KT is less sensitive. Furthermore, for KT and, to a lesser extent, the output link, rates of evolution were faster in 'spearing' stomatopods than 'smashers', indicating that mechanical sensitivity may influence trait-dependent diversification. Our results suggest that mechanical sensitivity can impact morphological evolution and guide the process of phenotypic diversification. The connection between mechanical sensitivity and evolutionary rates provides a window into the interaction between physical rules and the evolutionary dynamics of morphological diversification.


Assuntos
Estruturas Animais/anatomia & histologia , Evolução Biológica , Crustáceos/anatomia & histologia , Animais , Fenômenos Biomecânicos
19.
Artigo em Inglês | MEDLINE | ID: mdl-28005254

RESUMO

The optomotor response has been widely used to investigate insect sensitivity to contrast and motion. Several studies have revealed the sensitivity of this response to frequency and contrast, but we know less about the spatial integration underlying this response. Specifically, few studies have investigated how the horizontal angular extent of stimuli influences the optomotor response. We presented mantises with moving gratings of varying horizontal extents at three different contrasts in the central or peripheral regions of their visual fields. We assessed the relative effectivity of different regions to elicit the optomotor response and modelled the dependency of the response on the angular extent subtended by stimuli at these different regions. Our results show that the optomotor response is governed by stimuli in the central visual field and not in the periphery. The model also shows that in the central region, the probability of response increases linearly with increase in horizontal extent up to a saturation point. Furthermore, the dependency of the optomotor response on the angular extent of the stimulus is modulated by contrast. We discuss the implications of our results for different modes of stimulus presentation and for models of the underlying mechanisms of motion detection in the mantis.


Assuntos
Mantódeos/fisiologia , Atividade Motora , Campos Visuais , Percepção Visual , Animais , Modelos Lineares , Modelos Biológicos , Atividade Motora/fisiologia , Estimulação Luminosa , Psicometria , Campos Visuais/fisiologia , Percepção Visual/fisiologia
20.
J Exp Biol ; 220(Pt 7): 1360-1368, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356369

RESUMO

Stomatopods have an extraordinary visual system, incorporating independent movement of their eyes in all three degrees of rotational freedom. In this work, we demonstrate that in the peacock mantis shrimp, Odontodactylus scyllarus, the level of ocular independence is task dependent. During gaze stabilization in the context of optokinesis, there is weak but significant correlation between the left and right eyes in the yaw degree of rotational freedom, but not in pitch and torsion. When one eye is completely occluded, the uncovered eye does not drive the covered eye during gaze stabilization. However, occluding one eye does significantly affect the uncovered eye, lowering its gaze stabilization performance. There is a lateral asymmetry, with the magnitude of the effect depending on the eye (left or right) combined with the direction of motion of the visual field. In contrast, during a startle saccade, the uncovered eye does drive a covered eye. Such disparate levels of independence between the two eyes suggest that responses to individual visual tasks are likely to follow different neural pathways.


Assuntos
Crustáceos/fisiologia , Animais , Crustáceos/anatomia & histologia , Olho/anatomia & histologia , Movimentos Oculares , Movimentos Sacádicos , Visão Ocular , Campos Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA