Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.837
Filtrar
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744280

RESUMO

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Assuntos
Centrômero , Coesinas , Cinetocoros , Mitose , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Galinhas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
2.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
3.
Cell ; 187(21): 6055-6070.e22, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39181133

RESUMO

Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.


Assuntos
Cromotripsia , Resistencia a Medicamentos Antineoplásicos , Anemia de Fanconi , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Mitose , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Sistemas CRISPR-Cas/genética , Replicação do DNA , Recombinases/metabolismo , Reparo do DNA , Linhagem Celular Tumoral , Endonucleases/metabolismo , Endonucleases/genética , Quebras de DNA de Cadeia Dupla , Animais , Camundongos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ubiquitinação
4.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832525

RESUMO

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Assuntos
Citocinese , Embrião não Mamífero , Animais , Núcleo Celular , Centrossomo , Ciclinas/metabolismo , Drosophila , Mitose , Fuso Acromático/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo
5.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075754

RESUMO

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
6.
Annu Rev Biochem ; 91: 541-569, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35041460

RESUMO

Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target.


Assuntos
Proteínas de Ciclo Celular , Transdução de Sinais , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Conformação Proteica
7.
Cell ; 185(24): 4634-4653.e22, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347254

RESUMO

Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.


Assuntos
Sistemas CRISPR-Cas , Genes Essenciais , Humanos , Células HeLa , Técnicas de Inativação de Genes , Fenótipo
8.
Annu Rev Cell Dev Biol ; 38: 49-74, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512258

RESUMO

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor-one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly-disassembly, maintenance, and functions of cilia and mitotic spindles.


Assuntos
Dineínas , Cinesinas , Actinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Mitose , Miosinas/metabolismo , Fuso Acromático/metabolismo
9.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759800

RESUMO

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Assuntos
Centro Organizador dos Microtúbulos , Fuso Acromático , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
10.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125898

RESUMO

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Assuntos
Alelos , Proteína 9 Associada à CRISPR/metabolismo , Cromossomos Humanos/genética , Embrião de Mamíferos/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Linhagem Celular , Deleção Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Implantação do Embrião/genética , Proteínas do Olho/genética , Fertilização , Edição de Genes , Rearranjo Gênico/genética , Loci Gênicos , Genoma Humano , Genótipo , Heterozigoto , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mutação INDEL/genética , Camundongos , Mitose , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética
11.
Annu Rev Biochem ; 88: 691-724, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30601682

RESUMO

The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.


Assuntos
Centríolos/fisiologia , Cílios/patologia , Biogênese de Organelas , Animais , Ciclo Celular , Centríolos/metabolismo , Centríolos/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Ciliopatias , Eucariotos/citologia , Eucariotos/fisiologia , Humanos , Mitose , Transdução de Sinais
12.
Cell ; 178(2): 302-315.e23, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299200

RESUMO

Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.


Assuntos
Apoptose , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais , Taxa de Sobrevida , Ativação Transcricional , Proteína bcl-X/metabolismo
13.
Cell ; 178(3): 624-639.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348889

RESUMO

Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.


Assuntos
Centrômero/metabolismo , Cromossomos Artificiais Humanos/metabolismo , DNA Satélite/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Centrômero/genética , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteína B de Centrômero/deficiência , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Epigênese Genética , Humanos , Nucleossomos/química , Nucleossomos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
14.
Annu Rev Biochem ; 86: 749-775, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28226215

RESUMO

Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (H2O2) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by H2O2, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of H2O2 signaling. Moreover, their high affinity for and sensitivity to oxidation by H2O2 confer on Prxs the ability to serve as sensors and transducers of H2O2 signaling through transfer of their oxidation state to bound effector proteins.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxirredoxinas/metabolismo , Animais , Domínio Catalítico , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/ultraestrutura , Mitose , Oxirredução , Peroxirredoxinas/genética , Fosforilação , Transdução de Sinais
15.
Cell ; 169(6): 1078-1089.e13, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575671

RESUMO

In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly.


Assuntos
Centrossomo/química , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Mitose , Sequência de Aminoácidos , Animais , Drosophila melanogaster/química , Proteínas de Homeodomínio/metabolismo , Modelos Moleculares , Fosforilação , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência
16.
Cell ; 170(5): 956-972.e23, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841419

RESUMO

Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF's association with inner nuclear membrane proteins but instead relies on BAF's ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function.


Assuntos
Núcleo Celular/genética , Cromossomos Humanos/metabolismo , DNA/metabolismo , Mitose , Núcleo Celular/metabolismo , DNA/química , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fuso Acromático
17.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988770

RESUMO

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Chaetomium/metabolismo , Cromossomos/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Eucariotos/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
18.
Mol Cell ; 84(1): 55-69, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029753

RESUMO

Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.


Assuntos
Cromotripsia , Neoplasias , Humanos , Aberrações Cromossômicas , Mitose/genética , Instabilidade Genômica , Neoplasias/genética
19.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
20.
Mol Cell ; 84(6): 1003-1020.e10, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38359824

RESUMO

The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.


Assuntos
Centrômero , Sequências Repetitivas de Ácido Nucleico , Humanos , Centrômero/genética , Mitose/genética , Instabilidade Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA