Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 28, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347552

RESUMO

BACKGROUND: Children with relapsed central nervous system (CNS tumors), neuroblastoma, sarcomas, and other rare solid tumors face poor outcomes. This prospective clinical trial examined the feasibility of combining genomic and transcriptomic profiling of tumor samples with a molecular tumor board (MTB) approach to make real­time treatment decisions for children with relapsed/refractory solid tumors. METHODS: Subjects were divided into three strata: stratum 1-relapsed/refractory neuroblastoma; stratum 2-relapsed/refractory CNS tumors; and stratum 3-relapsed/refractory rare solid tumors. Tumor samples were sent for tumor/normal whole-exome (WES) and tumor whole-transcriptome (WTS) sequencing, and the genomic data were used in a multi-institutional MTB to make real­time treatment decisions. The MTB recommended plan allowed for a combination of up to 4 agents. Feasibility was measured by time to completion of genomic sequencing, MTB review and initiation of treatment. Response was assessed after every two cycles using Response Evaluation Criteria in Solid Tumors (RECIST). Patient clinical benefit was calculated by the sum of the CR, PR, SD, and NED subjects divided by the sum of complete response (CR), partial response (PR), stable disease (SD), no evidence of disease (NED), and progressive disease (PD) subjects. Grade 3 and higher related and unexpected adverse events (AEs) were tabulated for safety evaluation. RESULTS: A total of 186 eligible patients were enrolled with 144 evaluable for safety and 124 evaluable for response. The average number of days from biopsy to initiation of the MTB-recommended combination therapy was 38 days. Patient benefit was exhibited in 65% of all subjects, 67% of neuroblastoma subjects, 73% of CNS tumor subjects, and 60% of rare tumor subjects. There was little associated toxicity above that expected for the MGT drugs used during this trial, suggestive of the safety of utilizing this method of selecting combination targeted therapy. CONCLUSIONS: This trial demonstrated the feasibility, safety, and efficacy of a comprehensive sequencing model to guide personalized therapy for patients with any relapsed/refractory solid malignancy. Personalized therapy was well tolerated, and the clinical benefit rate of 65% in these heavily pretreated populations suggests that this treatment strategy could be an effective option for relapsed and refractory pediatric cancers. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02162732. Prospectively registered on June 11, 2014.


Assuntos
Neuroblastoma , Criança , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/etiologia
2.
Children (Basel) ; 5(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326621

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor encountered in childhood and accounts for 15% of pediatric cancer-related deaths. Although there has been significant improvement in the outcomes for patients with high-risk disease, the therapy needed to achieve a cure is quite toxic and for those that do experience a disease recurrence, the prognosis is very dismal. Given this, there is a tremendous need for novel therapies for children with high-risk neuroblastoma and the molecular discoveries over recent years provide hope for developing new, less toxic, and potentially more efficacious treatments. Here I discuss many of the molecular aberrations identified thus far in neuroblastoma, as well as the agents in development to target these changes. The progress made in both the preclinical arena and in early phase drug development provide much promise for the future of precision medicine in neuroblastoma.

3.
Front Pharmacol ; 8: 652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993730

RESUMO

Choroid plexus carcinomas (CPCs) are rare, aggressive pediatric brain tumors with no established curative therapy for relapsed disease, and poor survival rates. TP53 Mutation or dysfunction correlates with poor or no survival outcome in CPCs. Here, we report the case of a 4 month-old female who presented with disseminated CPC. After initial response to tumor resection and adjuvant-chemotherapy, the tumor recurred and metastasized with no response to aggressive relapse therapy suggesting genetic predisposition. This patient was then enrolled to a Molecular Guided Therapy Clinical Trial. Genomic profiling of patient tumor and normal sample identified a TP53 germline mutation with loss of heterozygosity, somatic mutations including IDH2, and aberrant activation of biological pathways. The mutations were not targetable for therapy. However, targeting the altered biological pathways (mTOR, PDGFRB, FGF2, HDAC) guided identification of possibly beneficial treatment with a combination of sirolimus, thalidomide, sunitinib, and vorinostat. This therapy led to 92% reduction in tumor size with no serious adverse events, excellent quality of life and long term survival.

4.
Cancer Med ; 4(6): 871-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25720842

RESUMO

The primary objective of the study was to evaluate the feasibility and safety of a process which would utilize genome-wide expression data from tumor biopsies to support individualized treatment decisions. Current treatment options for recurrent neuroblastoma are limited and ineffective, with a survival rate of <10%. Molecular profiling may provide data which will enable the practitioner to select the most appropriate therapeutic option for individual patients, thus improving outcomes. Sixteen patients with neuroblastoma were enrolled of which fourteen were eligible for this study. Feasibility was defined as completion of tumor biopsy, pathological evaluation, RNA quality control, gene expression profiling, bioinformatics analysis, generation of a drug prediction report, molecular tumor board yielding a treatment plan, independent medical monitor review, and treatment initiation within a 21 day period. All eligible biopsies passed histopathology and RNA quality control. Expression profiling by microarray and RNA sequencing were mutually validated. The average time from biopsy to report generation was 5.9 days and from biopsy to initiation of treatment was 12.4 days. No serious adverse events were observed and all adverse events were expected. Clinical benefit was seen in 64% of patients as stabilization of disease for at least one cycle of therapy or partial response. The overall response rate was 7% and the progression free survival was 59 days. This study demonstrates the feasibility and safety of performing real-time genomic profiling to guide treatment decision making for pediatric neuroblastoma patients.


Assuntos
Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/terapia , Neuroblastoma/terapia , Adolescente , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Doença Crônica , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Terapia de Alvo Molecular/efeitos adversos , Segurança do Paciente , Estudos Prospectivos , RNA Neoplásico/genética , Análise de Sequência de RNA/métodos , Tempo para o Tratamento , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA