Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Annu Rev Immunol ; 37: 97-123, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026412

RESUMO

The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.


Assuntos
Linfócitos B/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Regulação Alostérica , Animais , Compartimento Celular , Humanos , Ativação Linfocitária , Nanomedicina , Conformação Proteica
2.
Nano Lett ; 24(25): 7800-7808, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870391

RESUMO

Metal nanoclusters feature a hierarchical structure, facilitating their ability to mimic enzyme-catalyzed reactions. However, the lack of true catalytic centers, compounded by tightly bound surface ligands hindering electron transfers to substrates, underscores the need for universal rational design methodologies to emulate the structure and mechanisms of natural enzymes. Motivated by the electron transfer in active centers with specific chemical structures, by integrating the peroxidase cofactor Fe-TCPP onto the surface of glutathione-stabilized gold nanoclusters (AuSG), we engineered AuSG-Fe-TCPP clusterzymes with a remarkable 39.6-fold enhancement in peroxidase-like activity compared to AuSG. Fe-TCPP not only mimics the active center structure, enhancing affinity to H2O2, but also facilitates the electron transfer process, enabling efficient H2O2 activation. By exemplifying the establishment of a detecting platform for trace H2O2 produced by ultrasonic cleaners, we substantiate that the bioinspired surface-ligand-engineered electron transfer can improve sensing performance with a wider linear range and lower detection limit.


Assuntos
Ouro , Peróxido de Hidrogênio , Nanopartículas Metálicas , Ouro/química , Peróxido de Hidrogênio/química , Transporte de Elétrons , Ligantes , Catálise , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Glutationa/química
3.
Funct Integr Genomics ; 24(1): 5, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182693

RESUMO

Clinically, the immune checkpoint inhibitor anti-PD-1 antibody has shown a certain effect in the treatment of hepatocellular carcinoma (HCC), which is limited to a small number of patients with HCC. This study aims to reveal whether carnosic acid nanocluster-based framework (CA-NBF) has a sensitization effect on anti-PD-1 antibody in the treatment of HCC at the cellular and animal levels. MHCC97H cells were treated with CA-NBF, anti-PD-1 and their combination. The effects of CA-NBF and anti-PD-1 on cell proliferation, cell cycle, apoptosis, invasion, and migration were evaluated by MTT assay, flow cytometry, and scratch test. The effects of CA-NBF and anti-PD-1 on Wnt/ß-catenin signaling pathway in MHCC97H cells were detected. A BALB/C nude mouse model of hepatocellular carcinoma was established, and the tumor growth was observed at different time points. The expression of cytotoxic T lymphocyte and helper T lymphocyte markers CD8 and CD4 in tumor tissues was detected by immunohistochemistry. Western blotting was used to detect the Wnt/ß-catenin signaling pathway proteins (Wnt-3a, ß-catenin, and GSK-3ß) level in tumor tissues after CA-NBF and anti-PD-1 treatment. CA-NBF activity was significantly higher than CA, which could prominently reduce the proliferation, migration and invasion of MHCC97H cells and enhance apoptosis by inactivating Wnt/ß-catenin signaling pathway. CA-NBF combined with anti-PD-1 antibody further enhanced cell proliferation, migration, invasion and pro-apoptosis but had no significant effect on Wnt/ß-catenin signaling pathway. CA-NBF in vivo improved the tumor response to PD1 immune checkpoint blockade in HCC, manifested by reducing tumor size and weight, promoting CD4 and CD8 expression. CA-NBF combined with anti-PD-1 have stronger immunomodulatory and anticancer effects without increasing biological toxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Camundongos Endogâmicos BALB C , Inibidores de Checkpoint Imunológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Hepáticas/tratamento farmacológico , Carcinogênese , Imunoterapia
4.
Small ; : e2311895, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660823

RESUMO

The conformation of molecules and materials is crucial in determining their properties and applications. Here, this work explores the reversible transformation between two distinct conformational isomers in metal nanoclusters. This work demonstrates the successful manipulation of a controllable and reversible isomerization of Au18SR14 within an aqueous solution through two distinct methods: ethanol addition and pH adjustment. The initial driver is the alteration of the solution environment, leading to the aggregation of Au18SR14 protected by ligands with smaller steric hindrance. At the atomic level, the folding mode of the unique Au4SR5 staple underpins the observed structural transformation. The reversal of staple conformation leads to color shifting between green and orange-red, and tailors a second emission peak at 725 nm originating from charge transfer from the thiolate to the Au9 core. This work not only deepens the understanding of the surface structure and dual-emission of metal nanoparticles, but also enhances the comprehension of their isomerization.

5.
Small ; : e2311667, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507721

RESUMO

The designing and fabricating highly active hydrogen evolution reaction (HER) electrocatalysts that can superior to Pt/C is extremely desirable but challenging. Herein, the fabrication of Ru/TiO2/N-doped carbon (Ru/TiO2/NC) nanofiber is reported as a novel and highly active HER electrocatalyst through electrospinning and subsequent pyrolysis treatment, in which Ru nanoclusters are dispersed into TiO2/NC hybrid nanofiber. As a novel support, experimental and theoretical calculation results reveal that TiO2/NC can more effectively accelerate water dissociation as well as optimize the adsorption strength of *H than TiO2 and NC, thus leading to a significantly enhanced HER activity, which merely requires an overpotential of 18 mV to reach 10 mA cm-2, outperforming Pt/C in an alkaline solution. The electrolytic cell composed of Ru/TiO2/NC nanofiber and NiFe LDH/NF can generate 500 and 1000 mA cm-2 at voltages of 1.631 and 1.753 V, respectively. Furthermore, the electrolytic cell also exhibits remarkable durability for at least 100 h at 200 mA cm-2 with negligible degradation in activity. The present work affords a deep insight into the influence of support on the activity of electrocatalyst and the strategy proposed in this research can also be extended to fabricate various other types of electrocatalysts for diverse electrocatalytic applications.

6.
Small ; 20(22): e2309176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150625

RESUMO

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38581443

RESUMO

PURPOSE: The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS: We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS: Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION: In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.

8.
Chemistry ; : e202302602, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780031

RESUMO

Understanding the complete structure of noble metal nanoclusters is both academically and practically significant. However, progress has been hindered by the low synthetic efficiency of many nanocluster syntheses. In this study, we present the first high-throughput syntheses of homo-gold, homo-copper, and gold-copper alloy nanoclusters in dichloromethane at room temperature. Through high-throughput screening, we successfully obtained three nanoclusters in a single reaction: Au18(SC6H11)14, [Au41Cu66(SC6H11)44](SbF6)3, and an unidentified copper cluster (referred to as Au18, Au41Cu66, and Cu-NC). The optimized synthesis route was achieved with the assistance of machine learning for experimental data analysis, which also guided the synthesis of other metal nanoclusters such as Au40Cu34(4-S-PhF)40 (Au40Cu34), [Au6Cu6(SPh)12]n ([Au6Cu6]n), and Au18Cu32(3,5-C8H9S)36 (Au18Cu32)). This research demonstrates that high-throughput screening can be a valuable tool in accelerating the development of nanocluster syntheses.

9.
Chemistry ; 30(28): e202400527, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470123

RESUMO

Owing to distinct physicochemical properties in comparison to gold and silver counterparts, atomically precise copper nanoclusters are attracting embryonic interest in material science. The introduction of copper cluster nanomaterials in more interesting fields is currently urgent and desired. Reported in this work are novel copper nanoclusters of [XCu54Cl12(tBuS)20(NO3)12] (X=S or none, tBuSH=2-methyl-2-propanethiol), which exhibit high performance in photothermal conversion. The clusters have been prepared in one pot and characterized by combinatorial techniques including ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS). The molecular structure of the clusters, as revealed by single crystal X-ray diffraction analysis (SCXRD), shows the concentric three-shell Russian doll arrangement of X@Cu14@Cl12@Cu40. Interestingly, the [SCu54Cl12(tBuS)20(NO3)12] cluster contains 8 free valence electrons in its structure, making it the first eight-electron copper nanocluster stabilized by thiolates. More impressively, the clusters possess an effective photothermal conversion (temperature increases by 71 °C within ~50 s, λex=445 nm, 0.5 W cm-2) in a wide wavelength range (either blue or near-infrared). The photothermal conversion can be even driven under irradiation of simulated sunlight (3 sun), endowing the clusters with great potency in solar energy utilization.

10.
Anal Bioanal Chem ; 416(17): 3963-3974, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38814345

RESUMO

The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Luminescência , Humanos , Medições Luminescentes/métodos , Metais/química
11.
Macromol Rapid Commun ; 45(5): e2300559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014713

RESUMO

Alveolar bone injury under diabetic conditions can severely impede many oral disease treatments. Rebuilding diabetic alveolar bone in clinics is currently challenging due to persistent infection and inflammatory response. Here, an antibacterial DNA-based hydrogel named Agantigel is developed by integrating silver nanoclusters (AgNCs) and tumor necrosis factor-alpha (TNF-α) antibody into DNA hydrogel to promote diabetic alveolar bone regeneration. Agantigel can effectively inhibit bacterial growth through AgNCs while exhibiting negligible cytotoxicity in vitro. The sustained release of TNF-α antibody from Agantigel effectively blocks TNF-α and promotes M2 polarization of macrophages, ultimately accelerating diabetic alveolar bone regeneration in vivo. After 21 days of treatment, Agantigel significantly accelerates the defect healing rate of diabetic alveolar bone up to 82.58 ± 8.58% and improves trabecular architectures compared to free TNF-α (42.52 ± 15.85%). The results imply that DNA hydrogels are potential bio-scaffolds helping the sustained release of multidrug for treating DABI or other oral diseases.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/farmacologia , Fator de Necrose Tumoral alfa , Preparações de Ação Retardada , Antibacterianos/farmacologia , DNA
12.
J Nanobiotechnology ; 22(1): 379, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943158

RESUMO

The whole-cell inorganic-biohybrid systems show special functions and wide potential in biomedical application owing to the exceptional interactions between microbes and inorganic materials. However, the hybrid systems are still in stage of proof of concept. Here, we report a whole-cell inorganic-biohybrid system composed of Spirulina platensis and gold nanoclusters (SP-Au), which can enhance the cancer radiotherapy through multiple pathways, including cascade photocatalysis. Such systems can first produce oxygen under light irradiation, then convert some of the oxygen to superoxide anion (•O2-), and further oxidize the glutathione (GSH) in tumor cells. With the combination of hypoxic regulation, •O2- production, GSH oxidation, and the radiotherapy sensitization of gold nanoclusters, the final radiation is effectively enhanced, which show the best antitumor efficacy than other groups in both 4T1 and A549 tumor models. Moreover, in vivo distribution experiments show that the SP-Au can accumulate in the tumor and be rapidly metabolized through biodegradation, further indicating its application potential as a new multiway enhanced radiotherapy sensitizer.


Assuntos
Glutationa , Ouro , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Spirulina , Animais , Humanos , Ouro/química , Camundongos , Glutationa/metabolismo , Nanopartículas Metálicas/química , Células A549 , Linhagem Celular Tumoral , Neoplasias/radioterapia , Feminino , Fotossíntese , Superóxidos/metabolismo , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química
13.
J Dairy Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522835

RESUMO

Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at neutral pH or above but decreases as casein net charge approaches zero, allowing a condensed casein phase or gel to form then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.

14.
Chem Pharm Bull (Tokyo) ; 72(1): 121-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296514

RESUMO

In clinical diagnosis, fluorescent particles are applied to detect analytes in biofluids, such as blood and saliva. However, current fluorescence detection methods have not been optimized to account for the overlapping autofluorescence peaks of biological substances. Gold and silver nanoclusters are known to the novel fluorescent materials and their emission wavelengths depend on cluster size. In this study, we developed fluorescent silica nanoparticles using gold-silver alloy nanoclusters and chitosan (CS) (NH2-SiO2@Au@CS@AuAg) by the layer-by-layer method. Under UV-light irradiation at 365 nm, the emission wavelength of NH2-SiO2@Au@CS@AuAg reached 750 nm in the near-IR region. Scanning electron microscopy images revealed that the shape of NH2-SiO2@Au@CS@AuAg was uniform and spherical. The fluorescence spectrum of horse blood obtained in the presence of NH2-SiO2@Au@CS@AuAg contained a specific fluorescence peak attributed to NH2-SiO2@Au@CS@AuAg, which was distinguishable from the autofluorescence peaks. These results showed that NH2-SiO2@Au@CS@AuAg has advantageous fluorescence properties for clinical diagnostic applications.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Animais , Cavalos , Prata , Dióxido de Silício , Ouro
15.
Mikrochim Acta ; 191(4): 199, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483615

RESUMO

An innovative triple optical sensor is presented that utilizes gold nanoclusters (GNCs) stabilized with ciprofloxacin (CIP) and bovine serum albumin (BSA). The sensor is designed to identify three critical metal ions, namely Cu2+, Al3+, and Hg2+. Under 360 nm excitation, the synthesized CIP-BSA-GNCs demonstrate dual fluorescence emission with peaks at 448 nm (blue) and 612 nm (red). The red emission is associated with the interior of the CIP-BSA-GNCs, whereas the blue emission results from the surface-bound CIP molecules. The sensitive and selective fluorescent nanosensor CIP-BSA-GNCs were employed to detect Cu2+, Al3+, and Hg2+ ions. Cu2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at both peaks via the internal charge transfer mechanism (ICT). Cu2+ could be detected within the concentration range 1.13 × 10-3 to 0.05 µM, with a detection limit of 0.34 nM. Al3+ increased the intensity of CIP fluorescence at 448 nm via the chelation-induced fluorescence enhancement mechanism. The fluorescence intensity of the core CIP-BSA-GNCs at 612 nm was utilized as a reference signal. Thus, the ratiometric detection of Al3+ succeeded with a limit of detection of 0.21 nM within the dynamic range 0.69 × 10-3 to 0.07 µM. Hg2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at 612 nm via the metallophilic interaction mechanism. The fluorescence intensity of CIP molecules at 448 nm was utilized as a reference signal. This allowed for the ratiometric detection of Hg2+ with a detection limit of 0.7 nM within the concentration range 2.3 × 10-3 to 0.1 µM.


Assuntos
Mercúrio , Nanopartículas Metálicas , Ouro , Ciprofloxacina , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Soroalbumina Bovina , Íons
16.
Nano Lett ; 23(10): 4423-4430, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37129890

RESUMO

Gold nanoclusters (Au NCs) are potential emitters for electroluminescent light-emitting diodes (EL-LEDs) but restricted by the limited photoluminescence quantum yield (PLQY) and poor device compatibility. Herein, triple ligand engineered Au NCs enable the fabrication of Au NC-based LEDs with improved EL efficiency. Rigidified triple ligand shells greatly reduce the nonradiative transition and thus increase the PLQY of Au NCs from 2.1 to 73.4%. Most importantly, this strategy significantly improves the compatibility between Au NCs and charge transport materials in EL-LED fabrication. As a result, the EL-LEDs reach a maximum brightness of 1104 cd/m2 and an external quantum efficiency of 5.1%, which is the highest recorded for any reported Au NC-based EL-LEDs.

17.
Nano Lett ; 23(4): 1582-1590, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36763855

RESUMO

Properties of the underlying hole transport layer (HTL) play a crucial role in determining the optoelectronic performance of perovskite light-emitting devices (PeLEDs). However, endowing the current HTL system with a deep highest occupied molecular orbital (HOMO) level concurrent with high hole mobility is still a big challenge, in particular being an open constraint toward high-efficiency blue PeLEDs. In this regard, employing the poly(9-vinylcarbazole) as a model, we perform efficient incorporation of the atomic-precision metal nanoclusters (NCs), [Ag6PL6, PL = (S)-4-phenylthiazolidine-2-thione], to achieve significant tailoring in both HOMO energy level and hole mobility. As a result, the as-modified PeLEDs exhibit an external quantum efficiency (EQE) of 14.29% at 488 nm. The presented study exemplifies the success of metal NC involved HTL engineering and offers a simple yet effective additive strategy to settle the blue PeLED HTL dilemma, which paves the way for the fabrication of highly efficient blue PeLEDs.

18.
Nano Lett ; 23(16): 7508-7515, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37477210

RESUMO

Practical approaches to the synthesis of atomically precise metal nanoclusters are in high demand as they provide the structural basis for investigating nanomaterials' structure-property correlations with atomic precision. The Brust-Schiffrin method has been widely used, while the essential reductive ligands (e.g., thiols) limit the application of this method for synthesizing metal nanoclusters with specific frameworks and surface ligands. In this work, we developed a photochemical route for synthesizing atomically precise metal nanoclusters by applying disulfide, which is a widely available, stable, and environmentally friendly sulfur source. This method enables the construction of structurally diverse metal nanoclusters and especially features the synthesis of PhS-protected metal nanoclusters that were not easily achieved previously and the gram-scale synthesis. A reduction-oxidation cascade mechanism has been revealed for the photochemical route. This work is expected to open up new opportunities for metal nanocluster synthesis and will contribute to the practical applications of this kind of nanomaterial.

19.
Nano Lett ; 23(1): 235-242, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574348

RESUMO

The emerging metal nanocluster provides a platform for the investigation of structural features, unique properties, and structure-property correlation of nanomaterials at the atomic level. Construction of open sites on the surface of the metal nanocluster is a long-pursued but challenging goal. Herein, we realized the construction of "open organic sites" in a metal nanocluster for the first time. Specifically, we introduce the PNP (2,6-bis(diphenylphosphinomethyl)pyridine) pincer ligand in the synthesis of the gold nanocluster, enabling the construction of a structurally precise Au8(PNP)4 nanocluster. The rigidity and the unique bonding mode of PNP lead to open nitrogen sites on the surface of the Au8(PNP)4 nanocluster, which have been utilized as multifunctional sites in this work for efficient kinetic resolution and catalysis. The gold pincer nanocluster and the open nitrogen site-induced performance will be enlightening for the construction of multifunctional metal nanoclusters.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Catálise
20.
Nano Lett ; 23(15): 7236-7243, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37326318

RESUMO

Plasmonic metasurfaces have been realized for efficient light absorption, thereby leading to photothermal conversion through nonradiative decay of plasmonic modes. However, current plasmonic metasurfaces suffer from inaccessible spectral ranges, costly and time-consuming nanolithographic top-down techniques for fabrication, and difficulty of scale-up. Here, we demonstrate a new type of disordered metasurface created by densely packing plasmonic nanoclusters of ultrasmall size on a planar optical cavity. The system either operates as a broadband absorber or offers a reconfigurable absorption band right across the visible region, resulting in continuous wavelength-tunable photothermal conversion. We further present a method to measure the temperature of plasmonic metasurfaces via surface-enhanced Raman spectroscopy (SERS), by incorporating single-walled carbon nanotubes (SWCNTs) as an SERS probe within the metasurfaces. Our disordered plasmonic system, generated by a bottom-up process, offers excellent performance and compatibility with efficient photothermal conversion. Moreover, it also provides a novel platform for various hot-electron and energy-harvesting functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA