Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Annu Rev Biochem ; 89: 821-851, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32228045

RESUMO

Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.


Assuntos
Hemiterpenos/biossíntese , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/química , Borracha/química , Transferases/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Borracha/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/genética , Transferases/metabolismo
2.
Small ; : e2404771, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109931

RESUMO

Triboelectric nanogenerators (TENG) are promising alternatives for clean energy harvesting. However, the material utilization in the development of TENG relies majorly on polymers derived from non-renewable resources. Therefore, minimizing the carbon footprint associated with such TENG development demands a shift toward usage of sustainable materials. This study pioneers using natural rubber (NR) as a sustainable alternative in TENG development. Infusing graphene in NR, its dielectric constant and tribonegativity are optimized, yielding a remarkable enhancement. The optimized sample exhibits a dielectric constant of 411 (at 103 Hz) and a contact potential difference (CPD) value of 1.85 V. In contrast, the pristine NR sample showed values of 6 and 3.06 V for the dielectric constant and CPD. Simulation and experimental studies fine-tune the TENG's performance, demonstrating excellent agreement between theoretical predictions and practical studies. Sensors developed via stencil printing technique possess a remarkably low layer thickness of 270 µm, and boast a power density of 420 mW m-2, a staggering 250% increase over conventional NR. Moreover, the material is pressure sensitive, enabling precise real-time human motion detection, including finger contact, finger bending, neck bending, and arm bending. This versatile sensor offers wireless monitoring, empowering healthcare monitoring based on the Internet of Things.

3.
Small ; 20(25): e2311240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299719

RESUMO

Shape memory hydrogels provide a worldwide scope for functional soft materials. However, most shape memory hydrogels exhibit poor mechanical properties, leading to low actuation strength, which severely limits their applications in smart biomimetic devices. Herein, a strategy for muscle-inspired shape memory-oriented polyvinyl alcohol (PVA)-natural rubber latex (NRL) hydrogel (OPNH) with multiscale oriented structure is demonstrated. The shape memory function comes from the stretch-induced crystallization of natural rubber (NR), while PVA forms strong hydrogen bonding interactions with proteins and phospholipids on the surface of NRL particles. Meanwhile, the reconfigurable interactions of PVA and NR produce a multiscale-oriented structure during stretch-drying, improving the mechanical and shape memory properties. The resultant OPNH shows excellent interfacial compatibility, exhibiting outstanding mechanical performance (3.2 MPa), high shape fixity (≈80%) and shape recovery ratio (≈92%), high actuation strength (206 kPa), working capacity (105 kJ m- 3), extremely short response time (≈2 s), low response temperature (28 °C) and smart thermal responsiveness. It can even maintain muscle-like working capacity when lifting a load equivalent to 372 times its weight, providing a new class shape memory material for the application in smart biomimetic muscles and multistimulus responsive devices.

4.
Small ; : e2406066, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221661

RESUMO

Biomass-based functional polymers have received significant attention across various fields, in view of eco-friendly human society and sustainable growth. In this context, there are efforts to functionalize the biomass polymers for next-generation polymer materials. Here, stretchable heat transfer materials are focused on which are essential for stretchable electronics and future robotics. To achieve this goal, natural rubber (NR) is chemically modified with a thiol-terminated phenylnaphthalene (TTP), and then utilized as a thermally conductive NR (TCNR) matrix. Hexagonal boron nitride (h-BN), renowned for its high thermal conductivity and low electrical conductivity, is incorporated as a filler to develop stretchable heat transfer eco-materials. The optimized TCNR/h-BN composite elongates to 140% due to great elasticity of NR, and exhibits excellent dielectric properties (a low dielectric constant of 2.26 and a low dielectric loss of 0.006). Furthermore, synergetic phonon transfer of phenylnaphthalene crystallites and h-BN particles in the composite results in a high thermal conductivity of 0.87 W m-1 K-1. The outstanding thermal, mechanical, and dielectric properties of the newly developed TCNR/h-BN composite enable the successful demonstration as stretchable and shape-adaptable thermal management materials.

5.
Arch Microbiol ; 206(2): 71, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252137

RESUMO

COVID-19 pandemic has generated high demand for natural rubber gloves (NR) leading to crucial issues of rubber waste and waste management such as burning, dumping, stockpiling, discarding waste in landfills. Hence, rubber biodegradation by microorganisms is an alternative solution to the problem. The biodegradation method is environmentally friendly but normally extremely slow. Numerous microorganisms can degrade NR as a source of carbon and energy. In this study, Rhodococcus pyridinivorans KU1 was isolated from the consortium CK from previous study. The 40% rubber weight loss was detected after incubated for 2 months. The bacterial colonization and cavities on the surface of rubber were identified using a scanning electron microscope (SEM). The result demonstrated the critical degradation of the rubber surface, indicating that bacteria can degrade rubber and use it as their sole carbon source. The result of whole-genome sequencing (WGS) revealed a gene that is 99.9% identical to lcp which is responsible for poly (cis-1,4-isoprene) degradation. The results from Meta16S rRNA sequencing showed that the microbial communities were slightly shifted during the 2-month degradation, depending on the presence of monomers or oligomers appeared during the degradation process. The majority of species were soil bacteria such as phylum Proteobacteria, Actinobacteria, and Firmicutes. Members of Pseudoxanthomonas seemed to be the dominant degraders throughout the degradation.


Assuntos
Rhodococcus , Borracha , Humanos , Pandemias , Firmicutes , Carbono
6.
Appl Microbiol Biotechnol ; 108(1): 191, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305904

RESUMO

Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.


Assuntos
Oxigenases , Borracha , Borracha/metabolismo , Oxigenases/metabolismo , Proteínas de Bactérias/metabolismo , Látex/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999970

RESUMO

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Assuntos
Acetatos , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Genoma de Planta , Estudo de Associação Genômica Ampla
8.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398663

RESUMO

A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.

9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 958-963, 2024 Jul 20.
Artigo em Zh | MEDLINE | ID: mdl-39170021

RESUMO

Objective: To investigate the biological safety of commercially available natural rubber latex and synthetic polyurethane condoms. Methods: Natural rubber latex condom brands of A1 and A2 and polyurethane condom brands of B1 and B2 were purchased from large chain pharmacies in Chengdu, with three packages randomly selected for each brand. The study assessed the toxic effects of condom extracts on L-929 mouse fibroblasts according to GB/T standards. Gross observation and histopathological evaluation were conducted to assess the irritation reactions of condoms on the vagina and penis of rabbits (3 rabbits were used for each brand), as well as their sensitization effects on guinea pig skin. Additionally, the impact of continuous perfusion of condom extracts of the vaginas of SD rats for 30 days on their reproductive systems was evaluated, following GB/T standards (5 rats were used for each brand). Results: Extracts from natural rubber latex condom brands A1 and A2, at concentrations of 100% and 50%, exhibited significant cytotoxicity, with optical density (OD) values being significantly lower than those of the blank control group and the polyurethane condom brands B1 and B2 (P<0.01). There was no significant difference in cell morphology and OD values between the extracts of B1 and B2 and the blank control group (P>0.05). Vaginal congestion was found in 3 rabbits from A1 group and 1 rabbit from the A2 group, while no obvious congestion was noted in rabbits from the B1 and the B2 groups. Histopathological examination showed scattered inflammatory cell infiltration in the vaginal tissue of 3 rabbits from the A1 group and 2 rabbits from the A2 group, and slight congestion in the blood vessels of the lamina propria. No obvious pathological changes were observed in the vaginal tissue of polyurethane brand rabbits. Two rabbits from the A1 group and 1 rabbit from the A2 group showed transient and mild erythema on the penis during the experiment. Histopathological examination showed that 1 rabbit from A1 group had small foci of pericapillary lymphocytes in the dermis of the penis, while no significant pathological changes were observed in the penile tissue of A2, B1, and B2 groups. After 30 days of continuous vaginal perfusion with condom extract, 3 rats in A1 group and 2 rats in the A2 group had uterine congestion, with the degree of congestion being lower in the A2 group. No significant congestion or pathological changes were observed in the vaginal and penile tissues of rabbits, or in the uterine tissues of rats from the polyurethane groups. None of the 4 groups of guinea pigs showed significant skin allergic reactions to the condom extracts. Conclusion: Significant differences in biosafety exist among condoms of various materials and brands. To ensure product safety, it is crucial to strengthen quality control and regulatory oversight after condoms become commercially available.


Assuntos
Preservativos , Látex , Poliuretanos , Ratos Sprague-Dawley , Animais , Coelhos , Feminino , Cobaias , Ratos , Masculino , Látex/química , Camundongos , Vagina/patologia , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Borracha/efeitos adversos
10.
BMC Genomics ; 24(1): 13, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627555

RESUMO

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS: To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION: This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.


Assuntos
Locos de Características Quantitativas , Taraxacum , Borracha , Taraxacum/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo , Ligação Genética
11.
Curr Issues Mol Biol ; 45(12): 9342-9353, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132431

RESUMO

Natural rubber (cis-1,4-polyisoprene, NR) is an important raw material utilized widely in the manufacturing of medical, agricultural, and industrial products. Rubber tree (Hevea brasiliensis) and several alternative rubber-producing plants (Taraxacum kok-saghyz, Lactuca sativa, and Parthenium argentatum) have the capability to produce high-quality NR. With the progress of genome sequencing, similar rubber biosynthesis pathways have been discovered among different rubber-producing plant species. NR is synthesized and stored in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The rubber transferase complex is considered to be the pivotal enzyme involved in catalyzing NR biosynthesis. However, the exact compositions of the RT complex in rubber-producing plants remain elusive and poorly understood. Here, we review the progress of genome sequencing, natural rubber biosynthesis, and the components of the RT complex in rubber-producing plants. We emphasize that identifying the detailed components of the RT complex holds great significance for exploring the mechanism of NR biosynthesis and accelerating molecular breeding in rubber-producing plants.

12.
New Phytol ; 239(3): 1098-1111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247337

RESUMO

Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.


Assuntos
Borracha , Solidago , Borracha/química , Borracha/metabolismo , Lactuca/genética , Transferases/genética , Transferases/metabolismo
13.
New Phytol ; 239(4): 1475-1489, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36597727

RESUMO

Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.


Assuntos
Besouros , Taraxacum , Animais , Borracha/química , Borracha/metabolismo , Látex/metabolismo , Herbivoria , Larva , Plantas Geneticamente Modificadas/metabolismo , Taraxacum/genética
14.
J Sep Sci ; 46(19): e2201041, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37609805

RESUMO

Taraxacum kok-saghyz Rodin (TKS) has abundant natural rubber in its root and the molecular weight of its natural rubber is higher than that in Hevea brasiliensis. Thus, TKS is an excellent alternative for the commercial production of natural rubber. The content and molecular weight of natural rubber are two qualitative indicators. Efficient determination for both indicators is still a challenge. In this study, we developed a method to simultaneously determine the content and molecular weight of natural rubber in TKS with pyrolysis-gas chromatography-mass spectrometry. The content of natural rubber was quantified by internal standard method. We optimized the pyrolysis temperature and chromatographic method during content determination. The limits of detection and quantification were 0.47 and 1.56 µg, respectively. In addition, the arachidonic acid methyl ester, an unsaturated fatty acid proposed from the α-end group of natural rubber, was quantified to obtain the number of natural rubber polymers. Based on the content and the polymer number, we also quantified the molecular weight of natural rubber. Thus, the content and molecular weight of natural rubber were simultaneously determined in TKS. Our study provides a new perspective for the high throughput analysis of natural rubber.

15.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629038

RESUMO

Brassinolide (BR) is an important plant hormone that regulates the growth and development of plants and the formation of yield. The yield and quality of latex from Hevea brasiliensis are regulated by phytohormones. The understanding of gene network regulation mechanism of latex formation in rubber trees is still very limited. In this research, the rubber tree variety CATAS73397 was selected to analyze the relationship between BR, water deficit resistance, and latex yield. The results showed that BR improves the vitality of rubber trees under water deficit by increasing the rate of photosynthesis, reducing the seepage of osmotic regulatory substances, increasing the synthesis of energy substances, and improving the antioxidant system. Furthermore, BR increased the yield and quality of latex by reducing the plugging index and elevating the lutoid bursting index without decreasing mercaptan, sucrose, and inorganic phosphorus. This was confirmed by an increased expression of genes related to latex flow. RNA-seq analysis further indicated that DEG encoded proteins were enriched in the MAPK signaling pathway, plant hormone signal transduction and sucrose metabolism. Phytohormone content displayed significant differences, in that trans-Zeatin, ethylene, salicylic acid, kinetin, and cytokinin were induced by BR, whereas auxin, abscisic acid, and gibberellin were not. In summary, the current research lays a foundation for comprehending the molecular mechanism of latex formation in rubber trees and explores the potential candidate genes involved in natural rubber biosynthesis to provide useful information for further research in relevant areas.


Assuntos
Brassinosteroides , Hevea , Látex , Hevea/genética , Reguladores de Crescimento de Plantas , Borracha
16.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446175

RESUMO

MADS-box transcription regulators play important roles in plant growth and development. However, very few MADS-box genes have been isolated in the genus Taraxacum, which consists of more than 3000 species. To explore their functions in the promising natural rubber (NR)-producing plant Taraxacum kok-saghyz (TKS), MADS-box genes were identified in the genome of TKS and the related species Taraxacum mongolicum (TM; non-NR-producing) via genome-wide screening. In total, 66 TkMADSs and 59 TmMADSs were identified in the TKS and TM genomes, respectively. From diploid TKS to triploid TM, the total number of MADS-box genes did not increase, but expansion occurred in specific subfamilies. Between the two genomes, a total of 11 duplications, which promoted the expansion of MADS-box genes, were identified in the two species. TkMADS and TmMADS were highly conserved, and showed good collinearity. Furthermore, most TkMADS genes exhibiting tissue-specific expression patterns, especially genes associated with the ABCDE model, were preferentially expressed in the flowers, suggesting their conserved and dominant functions in flower development in TKS. Moreover, by comparing the transcriptomes of different TKS lines, we identified 25 TkMADSs related to biomass formation and 4 TkMADSs related to NR content, which represented new targets for improving the NR yield of TKS.


Assuntos
Borracha , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Genoma , Transcriptoma , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
17.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047430

RESUMO

As a renewable biomass material, nano-cellulose has been investigated as a reinforcing filler in rubber composites but has seen little success because of its strong inclination towards aggregating. Here, a bottom-up self-assembly approach was proposed by regenerating cellulose crystals from a mixture of cellulose solution and natural rubber (NR) latex. Different co-coagulants of both cellulose solution and natural rubber latex were added to break the dissolution equilibrium and in-situ regenerate cellulose in the NR matrix. The SEM images showed that the sizes and morphologies of regenerated cellulose (RC) varied greatly with the addition of different co-coagulants. Only when a 5 wt% acetic acid aqueous solution was used, the RC particles showed an ideal rod-like structure with small sizes of about 100 nm in diameter and 1.0 µm in length. The tensile test showed that rod-like RC (RRC)-endowed NR vulcanizates with pronounced reinforcement had a drastic upturn in stress after stretching to 200% strain. The results of XRD and the Mullins effect showed that this drastic upturn in stress was mainly attributed to the formation of rigid RRC-RRC networks during stretching instead of the strain-induced crystallization of NR. This bottom-up approach provided a simple way to ensure the effective utilization of cellulosic materials in the rubber industry.


Assuntos
Látex , Borracha , Borracha/química , Látex/química , Água , Excipientes
18.
Molecules ; 28(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764421

RESUMO

Pre-treated silica with a plasma-deposited (PD) layer of polymerized precursors was tested concerning its compatibility with Natural Rubber (NR) and its influence on the processing of silica-silane compounds. The modification was performed in a tailor-made plasma reactor. The degree of deposition of the plasma-coated samples was analyzed by ThermoGravimetric Analysis (TGA). In addition, Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFTs), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM) were performed to identify the morphology of the deposited plasma polymer layer on the silica surface. PD silica samples were incorporated into a NR/silica model compound. NR compounds containing untreated silica and in-situ silane-modified silica were taken as references. The silane coupling agent used for the reference compounds was bis-(3-triethoxysilyl-propyl)disulfide (TESPD), and reference compounds with untreated silica having the full amount and 50% of silane were prepared. In addition, 50% of the silane was added to the PD silica-filled compounds in order to verify the hypothesis that additional silane coupling agents can react with silanol groups stemming from the breakdown of the silica clusters during mixing. The acetylene PD silica with 50% reduced silane-filled compounds presented comparable properties to the in-situ silane-modified reference compound containing 100% TESPD. This facilitates processing as lower amounts of volatile organic compounds, such as ethanol, are generated compared to the conventional silica-silane filler systems.

19.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630270

RESUMO

(-)-Epigallocatechin gallate (EGCG) is a bioactive component of green tea that provides many health benefits. However, excessive intake of green tea may cause adverse effects of caffeine (CAF) since green tea (30-50 mg) has half the CAF content of coffee (80-100 mg). In this work, for enhancing the health benefits of green tea, natural rubber/hexagonal mesoporous silica (NR/HMS) nanocomposites with tunable textural properties were synthesized using different amine template sizes and applied as selective adsorbents to separate EGCG and CAF from green tea. The resulting adsorbents exhibited a wormhole-like silica framework, high specific surface area (528-578 m2 g-1), large pore volume (0.76-1.45 cm3 g-1), and hydrophobicity. The NR/HMS materials adsorbed EGCG more than CAF; the selectivity coefficient of EGCG adsorption was 3.6 times that of CAF adsorption. The EGCG adsorption capacity of the NR/HMS series was correlated with their pore size and surface hydrophobicity. Adsorption behavior was well described by a pseudo-second-order kinetic model, indicating that adsorption involved H-bonding interactions between the silanol groups of the mesoporous silica surfaces and the hydroxyl groups of EGCG and the carbonyl group of CAF. As for desorption, EGCG was more easily removed than CAF from the NR/HMS surface using an aqueous solution of ethanol. Moreover, the NR/HMS materials could be reused for EGCG adsorption at least three times. The results suggest the potential use of NR/HMS nanocomposites as selective adsorbents for the enrichment of EGCG in green tea. In addition, it could be applied as an adsorbent in the filter to reduce the CAF content in green tea by up to 81.92%.


Assuntos
Cafeína , Nanocompostos , Chá , Borracha , Adsorção , Dióxido de Silício
20.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110564

RESUMO

Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 µg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.


Assuntos
Eucommiaceae , Borracha , Eucommiaceae/química , Baías , Pirólise , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA