Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34505138

RESUMO

After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the protein-protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug screening, especially in the analysis of herbal ingredients.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Pandemias , SARS-CoV-2 , Antivirais/uso terapêutico , COVID-19/epidemiologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos
2.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202603

RESUMO

Osthole, a natural coumarin found in various medicinal plants, has been previously reported to have neuroprotective effects. However, the specific mechanism by which Osthole alleviates dysmnesia associated with Alzheimer's disease (AD) remains unclear. This study aimed to investigate the neuroprotective properties of Osthole against cognitive impairment in rats induced by D-galactose and elucidate its pharmacological mechanism. The rat model was established by subcutaneously injecting D-galactose at a dose of 150 mg/kg/day for 56 days. The effect of Osthole on cognitive impairment was evaluated by behavior and biochemical analysis. Subsequently, a combination of in silico prediction and experimental validation was performed to verify the network-based predictions, using western blot, Nissl staining, and immunofluorescence. The results demonstrate that Osthole could improve memory dysfunction induced by D-galactose in Sprague Dawley male rats. A network proximity-based approach and integrated pathways analysis highlight two key AD-related pathological processes that may be regulated by Osthole, including neuronal apoptosis, i.e., neuroinflammation. Among them, the pro-apoptotic markers (Bax), anti-apoptotic protein (Bcl-2), the microgliosis (Iba-1), Astro-cytosis (GFAP), and inflammatory cytokines (TNF-R1) were evaluated in both hippocampus and cortex. The results indicated that Osthole significantly ameliorated neuronal apoptosis and neuroinflammation in D-galactose-induced cognitive impairment rats. In conclusion, this study sheds light on the pharmacological mechanism of Osthole in mitigating D-galactose-induced memory impairment and identifies Osthole as a potential drug candidate for AD treatment, targeting multiple signaling pathways through network proximity and integrated pathways analysis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Animais , Galactose/efeitos adversos , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Cumarínicos/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico
3.
Am J Hum Genet ; 104(5): 861-878, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006514

RESUMO

Individuals with germline PTEN tumor-suppressor variants have PTEN hamartoma tumor syndrome (PHTS). Clinically, PHTS has variable presentations; there are distinct subsets of PHTS-affected individuals, such as those diagnosed with autism spectrum disorder (ASD) or cancer. It remains unclear why mutations in one gene can lead to such seemingly disparate phenotypes. Therefore, we sought to determine whether it is possible to predict a given PHTS-affected individual's a priori risk of ASD, cancer, or the co-occurrence of both phenotypes. By integrating network proximity analysis performed on the human interactome, molecular simulations, and residue-interaction networks, we demonstrate the role of conformational dynamics in the structural communication and long-range allosteric regulation of germline PTEN variants associated with ASD or cancer. We show that the PTEN interactome shares significant overlap with the ASD and cancer interactomes, providing network-based evidence that PTEN is a crucial player in the biology of both disorders. Importantly, this finding suggests that a germline PTEN variant might perturb the ASD or cancer networks differently, thus favoring one disease outcome at any one time. Furthermore, protein-dynamic structural-network analysis reveals small-world structural communication mediated by highly conserved functional residues and potential allosteric regulation of PTEN. We identified a salient structural-communication pathway that extends across the inter-domain interface for cancer-only mutations. In contrast, the structural-communication pathway is predominantly restricted to the phosphatase domain for ASD-only mutations. Our integrative approach supports the prediction and potential modulation of the relevant conformational states that influence structural communication and long-range perturbations associated with mutational effects that lead to PTEN-ASD or PTEN-cancer phenotypes.


Assuntos
Transtorno Autístico/genética , Redes Reguladoras de Genes , Mutação em Linhagem Germinativa , Simulação de Dinâmica Molecular , Neoplasias/genética , PTEN Fosfo-Hidrolase/química , Regulação Alostérica , Transtorno Autístico/patologia , Humanos , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética , Fenótipo , Conformação Proteica , Termodinâmica
4.
J Behav Med ; 39(5): 845-54, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27417286

RESUMO

This study examined HIV risks in the multiplex crack-smoking and sexual networks of incarcerated drug-using men who have sex with men (MSM) and their associates. We estimated the associations between the network members' incarceration, self-reported HIV infection, and trading sex for money. Our analytic sample consisted of 508 crack-smoking or sexual partnerships of 273 high-risk MSM. Network members were specified by (1) crack smoking and sexual behavior or (2) crack smoking only. Longer incarceration of the crack-smoking and sexual network members was associated with self-reported HIV infection (AOR = 1.61, p < 0.05), which extended up to one's partners' partners' partners (AOR = 1.63, p < 0.05). Similar results were found for trading sex (AOR = 2.77, p < 0.05). The findings of the study call for the development of a system-level HIV intervention among former incarcerated MSM and their associates.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Infecções por HIV/epidemiologia , Homossexualidade Masculina/estatística & dados numéricos , Assunção de Riscos , Abuso de Substâncias por Via Intravenosa/epidemiologia , Adulto , Causalidade , Transtornos Relacionados ao Uso de Cocaína/psicologia , Infecções por HIV/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Parceiros Sexuais , Abuso de Substâncias por Via Intravenosa/psicologia , Adulto Jovem
5.
J Ethnopharmacol ; 337(Pt 1): 118764, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218127

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulae have been used in China for thousands of years but have unclear clinical positioning and unknown characteristic indications make it difficult to determine their specific application in various diseases, which seriously hamper their clinical value. Identifying the precise clinical positioning and clinical advantages of similar formulae for related diseases is a critical issue. AIM OF THIS STUDY: To develop a methodology based on modular pharmacology to determine the clinical advantages and precise clinical position of similar formulae. MATERIALS AND METHODS: In this study, we proposed a modular-based network proximity approach to explore drug repositioning and clinical advantages of three formulae, Shirebi tablets (SRB), Yuxuebi capsules (YXB), and Wangbifukang granules (WBFK), for rheumatic disease. First, we constructed a rheumatology target network, and modules were obtained using the cluster tool molecular complex detection (MCODE). Based on the modular interaction map established by a quantitative approach for inter-module coordination and its transition (IMCC), using a targeting rate (TR) matrix to identify targeted modules of three formulae. Moreover, the network proximity Z-score and Jaccard similarity coefficient were used to identify potential optimal symptomatic indications and related diseases using three formulae. At the same time, the driver genes for SRB and gouty arthritis were identified by flow centrality and shortest distance, and the epresentative driver genes were validated by in vivo experiments. RESULTS: 32 modules were obtained using the MCODE method. 4, 4, and 14 characteristic targeted modules of SRB, YXB, and WBFK, respectively, were identified using a targeting rate (TR) matrix. Module 2, 16, and 19 were targeted by both SRB and WBFK. The common effects of SRB and WBFK focused on inflammatory response and innate immune response, YXB was found to be involved in the collagen catabolic process, transmembrane receptor protein serine/threonine kinase signaling pathway. Moreover, potential optimal symptomatic indications and representative related diseases were identified for three formulae: SRB was significantly associated with GA (Z = -20.26); YXB was significantly associated with AS (Z = -4.532), MI (Z = -29.11), RhFv (Z = -6.945), OA (Z = -39.97), and GA (Z = -13.03); and WBFK was significantly associated with MI (Z = -205.5), SLE (Z = -37.65), RhFv (Z = -42.45), and GA (Z = -17.24). Finally, 8 driver genes for SRB and gouty arthritis were identified,the representative driver genes TRAF6 and NFE2L1 were validated by in vivo experiments. CONCLUSIONS: The modular-based network proximity approach proposed in this study may provide a new perspective for the precise drug repositioning and clinical advantages of similar formulae in disease treatment.

6.
Front Pharmacol ; 15: 1418902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211773

RESUMO

Drug combinations have emerged as a promising therapeutic approach in cancer treatment, aimed at overcoming drug resistance and improving the efficacy of monotherapy regimens. However, identifying effective drug combinations has traditionally been time-consuming and often dependent on chance discoveries. Therefore, there is an urgent need to explore alternative strategies to support experimental research. In this study, we propose network-based prediction models to identify potential drug combinations for 11 types of cancer. Our approach involves extracting 55,299 associations from literature and constructing human protein interactomes for each cancer type. To predict drug combinations, we measure the proximity of drug-drug relationships within the network and employ a correlation clustering framework to detect functional communities. Finally, we identify 61,754 drug combinations. Furthermore, we analyze the network configurations specific to different cancer types and identify 30 key genes and 21 pathways. The performance of these models is subsequently assessed through in vitro assays, which exhibit a significant level of agreement. These findings represent a valuable contribution to the development of network-based drug combination design strategies, presenting potential solutions to overcome drug resistance and enhance cancer treatment outcomes.

7.
Curr Med Chem ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38551048

RESUMO

AIMS: To facilitate drug discovery and development for the treatment of osteoporosis. BACKGROUND: With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis. OBJECTIVE: To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis. METHODS: Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets. RESULTS: Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM- MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable. CONCLUSION: This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

8.
Comput Biol Med ; 173: 108292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513387

RESUMO

Lung cancer is one of the most common malignant tumors around the world, which has the highest mortality rate among all cancers. Traditional Chinese medicine (TCM) has attracted increased attention in the field of lung cancer treatment. However, the abundance of ingredients in Chinese medicines presents a challenge in identifying promising ingredient candidates and exploring their mechanisms for lung cancer treatment. In this work, two network-based algorithms were combined to calculate the network relationships between ingredient targets and lung cancer targets in the human interactome. Based on the enrichment analysis of the constructed disease module, key targets of lung cancer were identified. In addition, molecular docking and enrichment analysis of the overlapping targets between lung cancer and ingredients were performed to investigate the potential mechanisms of ingredient candidates against lung cancer. Ten potential ingredients against lung cancer were identified and they may have similar effect on the development of lung cancer. The results obtained from this study offered valuable insights and provided potential avenues for the development of novel drugs aimed at treating lung cancer.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Algoritmos , Tórax , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
9.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39065749

RESUMO

Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein-protein interactions rather than single gene abnormalities. Addressing this limitation requires a comprehensive drug screening strategy. Network medicine is rooted in systems biology and provides a comprehensive framework for understanding disease mechanisms, prevention, and therapeutic innovations. This approach not only explores the associations between various diseases but also quantifies the relationships between disease genes and drug targets within interactome networks, thus facilitating the prediction of drug-disease relationships and enabling the screening of therapeutic drugs for specific complex diseases. An increasing body of research supports the efficiency and utility of network-based strategies in drug screening. This review highlights the transformative potential of network medicine in virtual therapeutic screening for complex diseases, offering novel insights and a robust foundation for future drug discovery endeavors.

10.
BMC Med Genomics ; 17(1): 157, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862968

RESUMO

Primary Sclerosing Cholangitis (PSC) is a progressive cholestatic liver disease with no licensed therapies. Previous Genome Wide Association Studies (GWAS) have identified genes that correlate significantly with PSC, and these were identified by systematic review. Here we use novel Network Proximity Analysis (NPA) methods to identify already licensed candidate drugs that may have an effect on the genetically coded aspects of PSC pathophysiology.Over 2000 agents were identified as significantly linked to genes implicated in PSC by this method. The most significant results include previously researched agents such as metronidazole, as well as biological agents such as basiliximab, abatacept and belatacept. This in silico analysis could potentially serve as a basis for developing novel clinical trials in this rare disease.


Assuntos
Colangite Esclerosante , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/genética , Humanos , Estudo de Associação Genômica Ampla , Modelos Teóricos
11.
Comput Struct Biotechnol J ; 21: 1907-1920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936813

RESUMO

Despite the massive investment in Alzheimer's disease (AD), there are still no disease-modifying treatments (DMTs) for AD. One major reason is attributed to the limitation of clinical "one-size-fits-all" approach, since the same AD treatment solely based on clinical diagnosis was unlikely to achieve good clinical efficacy. In recent years, computational approaches based on multiomics data have provided an unprecedented opportunity for drug discovery since they can substantially lower the costs and boost the efficiency. In this study, we intended to identify potential drug candidates for different pathological stages of AD by computationally repurposing Food and Drug Administration (FDA) approved drugs. First, we assembled gene expression data from three different AD pathological stages, which include mild cognitive impairment (MCI) and early and late stages of AD (EAD, LAD). We next quantified the network distances between drug target networks and AD modules by utilizing a network proximity approach, and identified 193 candidates that possessed significant associations with AD. After searching for previous literature evidence, 63 out of 193 (32.6%) predicted drugs were demonstrated to exert therapeutic effects on AD. We further explored the novel mechanism of action (MOA) for these drug candidates by determining the specific brain cells they might function on based on AD patient single cell transcriptomic data. Additionally, we selected several promising candidates that could cross the blood brain barrier together with confirmed neuroprotective effects, and subsequently determined the antioxidative activity of these compounds. Experimental results showed that azathioprine decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD) activity in APP-SH-SY5Y cells. Finally, we deciphered the potential MOA of azathioprine against AD via network analysis and validated several apoptosis-related proteins (Caspase 3, Cleaved Caspase 3, Bax, Bcl2) through western blotting. In summary, this study presented an effective computational strategy utilizing omics data for AD drug repurposing, which provides a new perspective for drug discovery and development.

12.
Biomed Pharmacother ; 153: 113350, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777222

RESUMO

Conventional drug discovery and development is tedious and time-taking process; because of which it has failed to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid-19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time requirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile platform for repurposing as the network biology is used to model the interactions between variety of biological concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug repurposing while specifically focusing on the applications of network-based approach to drug repurposing in Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches in general and specific to network are stated along with future recommendations for better network-based models.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Inteligência Artificial , Descoberta de Drogas , Humanos , Aprendizado de Máquina
13.
Metabolites ; 12(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736460

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.

14.
Comput Struct Biotechnol J ; 19: 3990-4002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377365

RESUMO

Despite the fact that an increased amount of survival-related lncRNAs have been found in cancer, few drugs that target lncRNAs are approved for treatment. Here, we developed a network-based algorithm, LncTx, to repurpose the medications that potentially act on survival-related lncRNAs in lung cancer. We used eight survival-related lncRNAs derived from our previous study to test the efficacy of this method. LncTx calculates the shortest path length (proximity) between the drug targets and the lncRNA-correlated proteins in the protein-protein interaction network (interactome). LncTx contains seven different proximity measures, which are calculated in the unweighted or weighted interactome. First, to test the performance of LncTx in predicting correct indication of drugs, we benchmarked the proximity measures based on the accuracy of differentiating anticancer drugs from non-anticancer drugs. The closest proximity weighted by clustering coefficient (closestCC) has the best performance (AUC around 0.8) compared to other proximity measures across all survival-related lncRNAs. The majority of the other six proximity measures have decent performance as well, with AUC greater than 0.7. Second, to evaluate whether LncTx can repurpose the drugs effectively acting on the lncRNAs, we clustered the drugs according to their proximities by hierarchical clustering. The drugs with smaller proximity (proximal drugs) were proved to be more effective than the drugs with larger proximity (distal drugs). In conclusion, LncTx enables us to accurately identify anticancer drugs and can potentially be an index to repurpose effective agents acting on survival-related lncRNAs in lung cancer.

15.
Front Genet ; 12: 728960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539756

RESUMO

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

16.
Food Chem Toxicol ; 145: 111767, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32971210

RESUMO

Currently, coronavirus disease 2019 (COVID-19), has posed an imminent threat to global public health. Although some current therapeutic agents have showed potential prevention or treatment, a growing number of associated adverse events have occurred on patients with COVID-19 in the course of medical treatment. Therefore, a comprehensive assessment of the safety profile of therapeutic agents against COVID-19 is urgently needed. In this study, we proposed a network-based framework to identify the potential side effects of current COVID-19 drugs in clinical trials. We established the associations between 116 COVID-19 drugs and 30 kinds of human tissues based on network proximity and gene-set enrichment analysis (GSEA) approaches. Additionally, we focused on four types of drug-induced toxicities targeting four tissues, including hepatotoxicity, renal toxicity, lung toxicity, and neurotoxicity, and validated our network-based predictions by preclinical and clinical evidence available. Finally, we further performed pharmacovigilance analysis to validate several drug-tissue toxicities via data mining adverse event reporting data, and we identified several new drug-induced side effects without labeling in Food and Drug Administration (FDA) drug instructions. Overall, this study provides forceful approaches to assess potential side effects on COVID-19 drugs, which will be helpful for their safe use in clinical practice and promoting the discovery of antiviral therapeutics against SARS-CoV-2.


Assuntos
Antineoplásicos/efeitos adversos , Antivirais/efeitos adversos , Infecções por Coronavirus/tratamento farmacológico , Fatores Imunológicos/efeitos adversos , Farmacovigilância , Pneumonia Viral/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Ensaios Clínicos como Assunto , Humanos , Fatores Imunológicos/uso terapêutico , Pandemias , SARS-CoV-2
17.
J Gerontol B Psychol Sci Soc Sci ; 73(2): 326-336, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-26912490

RESUMO

Objectives: Policy reforms in long-term care require an increased share of informal caregivers in elderly care. This may be more feasible for older adults who (believe they) can organize the care themselves and have a local social network. This study describes care network types, how they vary in the share of informal caregivers, and examines associations with characteristics of community-dwelling older adults, including individual beliefs and network proximity. Method: Latent class analyses were applied to a subsample of older care receivers (N = 491) from the Longitudinal Aging Study Amsterdam, in order to identify homogeneous subgroups of people with similar care networks. Multinomial regression analysis explored associations between network type and care receiver characteristics. Results: Privately paid, coresidential, large informal, and publicly paid care network types were distinguished. Variation in informal care appeared mostly related to health, partner status, income, and proximity of children. Proximity of other potential informal caregivers did not affect the network type. Perceived control of care was highest in the privately paid network. Discussion: The results suggest that local (non-)kin could be mobilized more often in coresidential networks. Increasing informal or alternative care in publicly paid networks is less likely, due to limited social and financial resources.


Assuntos
Assistência Domiciliar , Rede Social , Idoso , Idoso de 80 Anos ou mais , Cultura , Feminino , Assistência Domiciliar/estatística & dados numéricos , Humanos , Análise de Classes Latentes , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA