Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9322-9330, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38924488

RESUMO

Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.

2.
Chemistry ; 28(5): e202103894, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822193

RESUMO

Methane dehydroaromatization is a promising reaction for the direct conversion of methane to liquid hydrocarbons. The active sites and the mechanism of this reaction remain controversial. This work is focused on the operando X-ray absorption near edge structure spectroscopy analysis of conventional Mo/ZSM-5 catalysts during their whole lifetime. Complemented by other characterization techniques, we derived spectroscopic descriptors of molybdenum precursor decomposition and its exchange with zeolite Brønsted acid sites. We found that the reduction of Mo-species proceeds in two steps and the active sites are of similar nature, regardless of the Mo content. Furthermore, the ZSM-5 unit cell contracts at the beginning of the reaction, which coincides with benzene formation and it is likely related to the formation of hydrocarbon pool intermediates. Finally, although reductive regeneration of used catalysts via methanation is less effective as compared to combustion of coke, it does not affect the structure of the catalysts.

3.
Angew Chem Int Ed Engl ; 60(25): 14005-14012, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33786969

RESUMO

Dual-metal single-atom catalysts exhibit superior performance for oxygen reduction reaction (ORR), however, the synergistic catalytic mechanism is not deeply understood. Herein, we report a dual-metal single-atom catalyst consisted of Cu-N4 and Zn-N4 on the N-doped carbon support (Cu/Zn-NC). It exhibits high-efficiency ORR activity with an Eonset of 0.98 V and an E1/2 of 0.83 V, excellent stability (no degradation after 10 000 cycles), surpassing state-of-the-art Pt/C and great mass of Pt-free single atom catalysts. Operando XANES demonstrates that the Cu-N4 as active center experiences the change from atomic dispersion to cluster with the cooperation of Zn-N4 during ORR process, and then turns to single atom state again after reaction. DFT calculation further indicates that the adjustment effect of Zn on the d-orbital electron distribution of Cu could benefit to the stretch and cleavage of O-O on Cu active center, speeding up the process of rate determining step of OOH*.

4.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286031

RESUMO

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

5.
ACS Appl Mater Interfaces ; 15(25): 30272-30280, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37329310

RESUMO

NASICON-type NaNbV(PO4)3 electrode material synthesized by the Pechini sol-gel technique undergoes a reversible three-electron reaction in a Na-ion cell which corresponds to the Nb5+/Nb4+, Nb4+/Nb3+, and V3+/V2+ redox processes and provides a reversible capacity of 180 mAh·g-1. The sodium insertion/extraction takes place in a narrow potential range at an average potential of 1.55 V versus Na+/Na. Structural characterization by operando and ex situ X-ray diffraction disclosed the reversible evolution of the NaNbV(PO4)3 polyhedron framework during cycling, while XANES measurements in the operando regime confirmed the multielectron transfer upon sodium intercalation/extraction into NaNbV(PO4)3. This electrode material demonstrates extended cycling stability and excellent rate capability maintaining the capacity value of 144 mAh·g-1 at 10 C current rates. It can be regarded as a superior anode material suitable for application in high-power and long-life sodium-ion batteries.

6.
Adv Sci (Weinh) ; 9(8): e2104877, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064771

RESUMO

Evolving cost-effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP-CoP2 (CNP-CP) composite is in situ deposited on carbon fabric by a one-step hydrothermal technique. The CNP-CP reveals hybrid nanoarchitecture (3D-on-1D HNA), i.e., cashew fruit-like nanostructures and nanocones. The CNP-CP HNA electrode delivers higher areal capacity (82.8 µAh cm-2 ) than the other electrodes. Furthermore, a hybrid cell assembled with CNP-CP HNA shows maximum energy and power densities of 31 µWh cm-2 and 10.9 mW cm-2 , respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X-ray absorption near-edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP-CP material during real-time electrochemical reactions.  Besides, a quasi-solid-state device unveils its practicability by powering electronic components. Meanwhile, the CNP-CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec-1 ) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP-based materials for multifunctional applications.

7.
ACS Appl Mater Interfaces ; 13(47): 56366-56374, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784712

RESUMO

Ti2Nb2O9 with a tunnel-type structure is considered as a perspective negative electrode material for Li-ion batteries (LIBs) with theoretical capacity of 252 mAh g-1 corresponding to one-electron reduction/oxidation of Ti and Nb, but only ≈160 mAh g-1 has been observed practically. In this work, highly reversible capacity of 200 mAh g-1 with the average (de)lithiation potential of 1.5 V vs Li/Li+ is achieved for Ti2Nb2O9 with pseudo-2D layered morphology obtained via thermal decomposition of the NH4TiNbO5 intermediate prepared by K+→ H+→ NH4+ cation exchange from KTiNbO5. Using operando synchrotron powder X-ray diffraction (SXPD), single-phase (de)lithiation mechanism with 4.8% unit cell volume change is observed. Operando X-ray absorption near-edge structure (XANES) experiment revealed simultaneous Ti4+/Ti3+ and Nb5+/Nb4+ reduction/oxidation within the whole voltage range. Li+ migration barriers for Ti2Nb2O9 along [010] direction derived from density functional theory (DFT) calculations are within the 0.15-0.4 eV range depending on the Li content that is reflected in excellent C-rate capacity retention. Ti2Nb2O9 synthesized via the ion-exchange route appears as a strong contender to widely commercialized Ti-based negative electrode material Li4Ti5O12 in the next generation of high-performance LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA