Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
J Biol Chem ; 300(1): 105584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141761

RESUMO

Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.


Assuntos
Proteínas de Ligação a DNA , Inibidores Enzimáticos , Chaperonas de Histonas , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias , Complexo Repressor Polycomb 1 , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-akt , Humanos , Inibidores Enzimáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Complexo Repressor Polycomb 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/deficiência , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Transdução de Sinais , Ativação Enzimática , Linhagem Celular Tumoral
2.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364889

RESUMO

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Assuntos
Doença , Fosfatidilinositóis , Transdução de Sinais , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Humanos
3.
J Biol Chem ; 300(3): 105763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367671

RESUMO

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.


Assuntos
Receptores ErbB , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ligantes , Mutação , Fosfolipases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Domínios Proteicos/genética , Células CHO , Animais , Cricetinae , Humanos , Glioblastoma/genética
4.
J Biol Chem ; 299(6): 104815, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178918

RESUMO

Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes. However, many of the studies involved in the discovery of deleterious ceramide actions used a nonphysiological, cell-permeable, short-chain ceramide analog, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes deacylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous monounsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and type 2 diabetes.


Assuntos
Ceramidas , Resistência à Insulina , Humanos , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
5.
J Biol Chem ; 299(11): 105322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805137

RESUMO

The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.


Assuntos
Insulina , Glicogênio Hepático , Animais , Camundongos , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
J Biol Chem ; 299(9): 105097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507012

RESUMO

The conserved protein kinase mTOR (mechanistic target of rapamycin) responds to diverse environmental cues to control cell metabolism and promote cell growth, proliferation, and survival as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2. Our prior work demonstrated that an alkaline intracellular pH (pHi) increases mTORC2 activity and cell survival in complete media in part by activating AMP-activated protein kinase, a kinase best known to sense energetic stress. It is important to note that an alkaline pHi represents an underappreciated hallmark of cancer cells that promotes their oncogenic behaviors. In addition, mechanisms that control mTORC1 and mTORC2 signaling and function remain incompletely defined, particularly in response to stress conditions. Here, we demonstrate that an alkaline pHi increases phosphatidylinositide 3-kinase (PI3K) activity to promote mTORC1 and mTORC2 signaling in the absence of serum growth factors. Alkaline pHi increases mTORC1 activity through PI3K-Akt signaling, which mediates inhibitory phosphorylation of the upstream proteins tuberous sclerosis complex 2 and proline-rich Akt substrate of 40 kDa and dissociates tuberous sclerosis complex from lysosomal membranes, thus enabling Rheb-mediated activation of mTORC1. Thus, alkaline pHi mimics growth factor-PI3K signaling. Functionally, we also demonstrate that an alkaline pHi increases cap-dependent protein synthesis through inhibitory phosphorylation of eIF4E binding protein 1 and suppresses apoptosis in a PI3K- and mTOR-dependent manner. We speculate that an alkaline pHi promotes a low basal level of cell metabolism (e.g., protein synthesis) that enables cancer cells within growing tumors to proliferate and survive despite limiting growth factors and nutrients, in part through elevated PI3K-mTORC1 and/or PI3K-mTORC2 signaling.

7.
Chemphyschem ; : e202400550, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798156

RESUMO

Extensive research has already provided reliable methods for the in silico prediction of pKa, while a trustworthy strategy for pKb determination is still being sought. Indeed, the approaches previously exploited for computing pKa have shown their weakness in predicting pKb. In the light of the exceptional reliability demonstrated in the pKa calculation of a wide panel of organic acids, in this work, we exploited our "easy to use methodology", based on the direct approach, to predict the pKb of primary amines. Herein, CAM-B3LYP was compared to WB97XD and B3PW91, exploring the solvation model based on density (SMD) and the polarizable continuum model (PCM), in the presence of two explicit water molecules. Noteworthy, CAM-B3LYP and WB97XD returned completely different solvent accessible surfaces (SAS) and electron potential maps (EPM) for the bases and the conjugated acids, independently from the nature of the substituents. Once again, CAM-B3LYP/SMD/2H2O method confirmed its remarkable reliability, leading to a minimum average error (MAE) lower than 0.3. This outstanding result strengthens the trustworthiness of our method, already successfully applied to predict the pKa of different substituted phenols and carboxylic acids. Thus, our "easy-to-use" process can predict also the pKb of primary ammines and anilines, always ensuring consistent outputs.

8.
Cell Commun Signal ; 22(1): 85, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291468

RESUMO

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Moléculas de Adesão de Célula Nervosa , Caderinas , Neoplasias Pulmonares/genética , Isoformas de Proteínas , Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/metabolismo , Neoplasias Pancreáticas/patologia
9.
Bioorg Med Chem Lett ; 104: 129728, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582133

RESUMO

Antascomicin B is a natural product that similarly to the macrolides FK506 and Rapamycin binds to the FK506-binding protein 12 (FKBP12). FK506 and Rapamycin act as molecular glues by inducing ternary complexes between FKBPs and additional target proteins. Whether Antascomicin B can induce ternary complexes is unknown. Here we show that Antascomicin B binds tightly to larger human FKBP homologs. The cocrystal structure of FKBP51 in complex with Antascomicin B revealed that large parts of Antascomicin B are solvent-exposed and available to engage additional proteins. Cellular studies demonstrated that Antascomicin B enhances the interaction between human FKBP51 and human Akt. Our studies show that molecules with molecular glue-like properties are more prominent in nature than previously thought. We predict the existence of additional 'orphan' molecular glues that evolved to induce ternary protein complexes but where the relevant ternary complex partners are unknown.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a Tacrolimo , Tacrolimo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Tacrolimo/farmacologia , Tacrolimo/análogos & derivados , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
10.
J Biol Chem ; 298(8): 102225, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780836

RESUMO

Ephrin-B signaling has been implicated in many normal and pathological processes, including neural crest development and tumor metastasis. We showed previously that proteolysis of ephrin-B ligands by the disintegrin metalloprotease ADAM13 is necessary for canonical Wnt signal activation and neural crest induction in Xenopus, but it was unclear if these mechanisms are conserved in mammals. Here, we report that mammalian ADAM9 cleaves ephrin-B1 and ephrin-B2 and can substitute for Xenopus ADAM13 to induce the neural crest. We found that ADAM9 expression is elevated in human colorectal cancer (CRC) tissues and that knockdown (KD) of ADAM9 inhibits the migration and invasion of SW620 and HCT116 CRC cells by reducing the activity of Akt kinase, which is antagonized by ephrin-Bs. Akt is a signaling node that activates multiple downstream pathways, including the Wnt and mTOR pathways, both of which can promote CRC cell migration/invasion. Surprisingly, we also found that KD of ADAM9 downregulates Wnt signaling but has negligible effects on mTOR signaling in SW620 cells; in contrast, mTOR activity is suppressed while Wnt signaling remains unaffected by ADAM9 KD in HCT116 cells. These results suggest that mammalian ADAM9 cleaves ephrin-Bs to derepress Akt and promote CRC migration and invasion; however, the signaling pathways downstream of Akt are differentially regulated by ADAM9 in different CRC cell lines, reflecting the heterogeneity of CRC cells in responding to manipulations of upstream Akt regulators.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Colorretais , Efrinas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Ligantes , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt
11.
J Biol Chem ; 298(10): 102379, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973513

RESUMO

Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.


Assuntos
Fator 1 de Ribosilação do ADP , Mapas de Interação de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mapeamento de Interação de Proteínas/métodos
12.
J Biol Chem ; 298(9): 102310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921893

RESUMO

Disruption of fetal growth results in severe consequences to human health, including increased fetal and neonatal morbidity and mortality, as well as potential lifelong health problems. Molecular mechanisms promoting fetal growth represent potential therapeutic strategies to treat and/or prevent fetal growth restriction (FGR). Here, we identify a previously unknown role for the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) in promoting fetal and placental growth. We demonstrate that inactivation of MAP3K4 kinase activity causes FGR due in part to placental insufficiency. Significantly, MAP3K4 kinase-inactive mice display highly penetrant lethality prior to weaning and persistent growth reduction of surviving adults. Additionally, we elucidate molecular mechanisms by which MAP3K4 promotes growth through control of the insulin-like growth factor 1 receptor (IGF1R), insulin receptor (IR), and Akt signaling pathway. Specifically, MAP3K4 kinase inactivation in trophoblast stem (TS) cells results in reduced IGF1R and IR expression and decreased Akt activation. We observe these changes in TS cells also occur in differentiated trophoblasts created through in vitro differentiation of cultured TS cells and in vivo in placental tissues formed by TS cells. Furthermore, we show that MAP3K4 controls this pathway by promoting Igf1r transcript expression in TS cells through activation of CREB-binding protein (CBP). In the MAP3K4 kinase-inactive TS cells, Igf1r transcripts are repressed because of reduced CBP activity and increased histone deacetylase 6 expression and activity. Together, these data demonstrate a critical role for MAP3K4 in promoting fetal and placental growth by controlling the activity of the IGF1R/IR and Akt signaling pathway.


Assuntos
Desenvolvimento Fetal , MAP Quinase Quinase Quinase 4 , Placenta , Placentação , Receptor IGF Tipo 1 , Receptor de Insulina , Adulto , Animais , Proteína de Ligação a CREB/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Placenta/enzimologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
13.
Biogerontology ; 24(6): 913-923, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458859

RESUMO

One of the theories related to aging is the increase in oxidative stress. Given this, the objective of the study is to evaluate the cellular mechanisms responsible for the resveratrol antioxidant effect on leukocytes from donors aged between 20 and 80 years old. For this, leukocytes from donors of three age groups (20-39, 40-59 and 60-80) were isolated. Image-iT™LIVE Green Reactive Oxygen Species (ROS) Kit was used. Reactive Nitrogen Species (RNS) analysis was performed by measuring nitric oxide and peroxynitrite. The PKA, Akt/PKB and p38-MAPK were evaluated by chemiluminescence. The statistical analysis between age and treatments were performed by Pearson correlation (*p < 0.05). It was possible to observe the antioxidant effect of resveratrol in all age groups. The correlation results show loss of resveratrol effect in decreasing ROS in leukocytes from older donors. We observed an active antioxidant effect of p38-MAPK in all ages, with resveratrol acting on it. The PKA and Akt/PKB were active in leukocytes from donors aged 20-59. In cells from donors older than 60, these pathways are silenced, and an effect is also not observed in cells treated with resveratrol. Therefore, resveratrol showed antioxidant effect in all age, although it was more pronounced in leukocytes from younger. One of resveratrol's mechanisms is due to the activation of the PKA and Akt/PKB, which were activated in younger donor cells.


Assuntos
Antioxidantes , Proteínas Proto-Oncogênicas c-akt , Antioxidantes/farmacologia , Resveratrol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cell Mol Life Sci ; 79(7): 393, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780223

RESUMO

PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.


Assuntos
Aspirina , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais , Aspirina/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/genética , Humanos , Mutação/genética
15.
Eur Arch Otorhinolaryngol ; 280(2): 703-711, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35831673

RESUMO

OBJECTIVES: To investigate the therapeutic effect of Bicalutamide, an androgen receptor antagonist on the onset and development of allergic rhinitis in an animal model. METHODS: 40 male BALB/c mice were randomly divided into five groups (eight mice per group). Aluminum hydroxide powder was used as an adjuvant, combined with Ovalbumin (OVA) to establish the mouse model of allergic rhinitis via ultrasonic nebulization of OVA to stimulate the nasal cavity. Mice in Bica#1 group were intraperitoneally injected with 0.02 mg Bicalutamide/0.5 ml of normal saline daily for 7 consecutive days; mice in Bica#2 group were administered 0.02 mg Bicalutamide/0.5 ml of normal saline via intraperitoneal injection for 5 consecutive days, and then the same amount of normal saline was injected intraperitoneally for 2 consecutive days. Enzyme-linked immunosorbent assay was adopted to detect the serological levels of IgE, IL-4, and IL-6 production. Eosinophil infiltration was observed under microscope after hematoxylin and eosin staining of nasal mucosa. Quantitative PCR and Western blot were employed for determination of histamine receptors mRNA expression and PI3K/PKB associated protein levels, respectively. RESULTS: Histological analysis shown that allergic lesion was induced after OVA sensitization. Intraperitoneal injection with 0.02 mg Bicalutamide daily for 7 consecutive days significantly reduced the allergic lesion; however, mice injected with the same amount of normal saline at the same time demonstrated no allergic rhinitis symptoms. In addition, there was a significant reduction in eosinophils number in Bicalutamide treated mice (n = 8) compared to the OVA group (n = 8) (OVA: 19.6 ± 5.3 vs. Bica#1: 7.7 ± 0.8 vs. Bica#2: 9.4 ± 1.2, both p < 0.01). Furthermore, ELISA results revealed that the serological levels of IgE (OVA: 17.3 ± 1.7 µg/ml vs. Bica#1: 9.2 ± 0.6 vs. Bica#2: 10.4 ± 2.3, both p < 0.05), IL-4 (OVA: 164.3 ± 5.1 pg/ml vs. Bica#1: 110.2 ± 3.1 vs. Bica#2: 115.3 ± 4.1, both p < 0.05) and IL-6 (OVA: 167.3 ± 3.7 pg/ml vs. Bica#1: 117.5 ± 6.5 vs. Bica#2: 114.8 ± 2.4, both p < 0.05) were significantly decreased after two different dosage of Bicalutamide treatment. Similarly, histamine receptors in mast cells were significantly reduced after two different dosage of Bicalutamide treatment. More importantly, p-PKB protein was notably reduced after two different dosage of Bicalutamide treatment compared to the OVA group, mTOR protein levels were also down regulated after two different dosage of Bicalutamide treatment. CONCLUSIONS: Our data demonstrated that androgen receptor antagonist Bicalutamide can significantly alleviate allergic rhinitis lesion in the animal model. PI3K/PKB activity in mast cells was suppressed after Bicalutamide injection. Our results provide important implication in allergic rhinitis prevention and treatment.


Assuntos
Antagonistas de Receptores de Andrógenos , Rinite Alérgica , Animais , Masculino , Camundongos , Antagonistas de Receptores de Andrógenos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Mucosa Nasal/patologia , Ovalbumina , Fosfatidilinositol 3-Quinases/metabolismo , Rinite Alérgica/tratamento farmacológico
16.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768628

RESUMO

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined. In the present study, we showed a rapid and marked induction of ATF3 mRNA throughout ischemia-reperfusion in a middle cerebral artery (MCA) occlusion model. Although the level of CTMP mRNA was quickly induced upon ischemia, its level showed only a mild increase after reperfusion. With the gain-of-function approach, both pre- and post-ischemic administration of Ad-ATF3 ameliorated brain infarct and neurological deficits. Whereas, with the loss-of-function approach, ATF3 knockout (KO) mice showed bigger infarct and worse functional outcome after ischemia. In addition, these congenital defects were rescued upon reintroducing ATF3 to the brain of KO mice. ATF3 overexpression led to a lower level of CTMP and a higher level of p-Akt(473) in the ischemic brain. On the contrary, ATF3 KO resulted in upregulation of CTMP and downregulation of p-Akt(473) instead. Furthermore, post-ischemic CTMP siRNA knockdown led to smaller infarct and better behaviors. CTMP siRNA knockdown increased the level of p-Akt(473), but did not alter the ATF3 level in the ischemic brain, upholding the ATF3→CTMP signal cascade. In summary, our proof-of-principle experiments support the existence of neuroprotective ATF3→CTMP signal cascade regulating the ischemic brain. Furthermore, these results suggest the therapeutic potential for both ATF3 overexpression and CTMP knockdown for stroke treatment.


Assuntos
Isquemia Encefálica , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Camundongos Knockout , Infarto Encefálico/genética , RNA Interferente Pequeno/genética , Infarto Cerebral , Palmitoil-CoA Hidrolase/metabolismo
17.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569330

RESUMO

Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 µM and BHT 20 µM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.


Assuntos
Antioxidantes , Solanina , Antioxidantes/farmacologia , Hidroxitolueno Butilado , Hidroxianisol Butilado/farmacologia , Acrilamida/toxicidade , Proteínas , DNA , RNA
18.
J Biol Chem ; 296: 100637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872597

RESUMO

TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis-Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 µM) and Thr649 (KM ∼25 µM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 µM), Ser711 (KM ∼79 µM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminopeptidases/genética , Animais , Proteínas Ativadoras de GTPase/genética , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
19.
J Biol Chem ; 296: 100157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273014

RESUMO

Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.


Assuntos
Comunicação Autócrina/genética , Neuregulina-1/genética , Neurofibromina 2/genética , Receptor ErbB-3/genética , Receptor IGF Tipo 1/genética , Serina-Treonina Quinases TOR/genética , Anticorpos Monoclonais Humanizados/farmacologia , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Lapatinib/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Morfolinas/farmacologia , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/metabolismo , Neurofibromina 2/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Triazinas/farmacologia
20.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055044

RESUMO

Renal proximal tubule cells (PTECs) act as urine gatekeepers, constantly and efficiently avoiding urinary protein waste through receptor-mediated endocytosis. Despite its importance, little is known about how this process is modulated in physiologic conditions. Data suggest that the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway regulates PTEC protein reabsorption. Here, we worked on the hypothesis that the physiologic albumin concentration and PI3K/AKT pathway form a positive feedback loop to expand endocytic capacity. Using LLC-PK1 cells, a model of PTECs, we showed that the PI3K/AKT pathway is required for megalin recycling and surface expression, affecting albumin uptake. Inhibition of this pathway stalls megalin at EEA1+ endosomes. Physiologic albumin concentration (0.01 mg/mL) activated AKT; this depends on megalin-mediated albumin endocytosis and requires previous activation of PI3K/mTORC2. This effect is correlated to the increase in albumin endocytosis, a phenomenon that we refer to as "albumin-induced albumin endocytosis". Mice treated with L-lysine present decreased albumin endocytosis leading to proteinuria and albuminuria associated with inhibition of AKT activity. Renal cortex explants obtained from control mice treated with MK-2206 decreased albumin uptake and promoted megalin internalization. Our data highlight the mechanism behind the capacity of PTECs to adapt albumin reabsorption to physiologic fluctuations in its filtration, avoiding urinary excretion.


Assuntos
Células Epiteliais/metabolismo , Retroalimentação Fisiológica , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Albuminas/metabolismo , Animais , Biomarcadores , Endocitose , Células Epiteliais/efeitos dos fármacos , Imunofluorescência , Expressão Gênica , Túbulos Renais Proximais/citologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA