Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37254876

RESUMO

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Assuntos
Transdução de Sinais , Somatostatina , Alelos , Somatostatina/genética , Somatostatina/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética , Interneurônios/metabolismo , Neurônios GABAérgicos/metabolismo
2.
Annu Rev Genet ; 51: 123-141, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29178821

RESUMO

Genetic mosaicism arises when a zygote harbors two or more distinct genotypes, typically due to de novo, somatic mutation during embryogenesis. The clinical manifestations largely depend on the differentiation status of the mutated cell; earlier mutations target pluripotent cells and generate more widespread disease affecting multiple organ systems. If gonadal tissue is spared-as in somatic genomic mosaicism-the mutation and its effects are limited to the proband, whereas mosaicism also affecting the gametes, such as germline or gonosomal mosaicism, is transmissible. Mosaicism is easily appreciated in cutaneous disorders, as phenotypically distinct mutant cells often give rise to lesions in patterns determined by the affected cell type. Genetic investigation of cutaneous mosaic disorders has identified pathways central to disease pathogenesis, revealing novel therapeutic targets. In this review, we discuss examples of cutaneous mosaicism, approaches to gene discovery in these disorders, and insights into molecular pathobiology that have potential for clinical translation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mosaicismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Dermatopatias Genéticas/genética , Ectoderma/metabolismo , Ectoderma/patologia , Embrião de Mamíferos , Endoderma/metabolismo , Endoderma/patologia , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratina-10/genética , Queratina-10/metabolismo , Microdissecção e Captura a Laser , Mesoderma/metabolismo , Mesoderma/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/patologia , Fatores de Tempo , Sequenciamento do Exoma
3.
Hum Genomics ; 18(1): 29, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520002

RESUMO

Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.


Assuntos
Aberrações Cromossômicas , Haploinsuficiência , Humanos , Haploinsuficiência/genética , Rearranjo Gênico , Cromossomos , Sequenciamento Completo do Genoma/métodos , Proteínas de Transporte/genética , Proteínas Nucleares/genética
4.
J Biol Chem ; 299(6): 104789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149146

RESUMO

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Humanos , Linhagem Celular , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
5.
Am J Med Genet A ; 194(2): 195-202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37774117

RESUMO

Fetuses with RASopathies can have a wide variety of anomalies including increased nuchal translucency, hydrops fetalis, and structural anomalies (typically cardiac and renal). There are few reports that describe prenatal-onset craniosynostosis in association with a RASopathy diagnosis. We present clinical and molecular characteristics of five individuals with RASopathy and craniosynostosis. Two were diagnosed with craniosynostosis prenatally, 1 was diagnosed as a neonate, and 2 had evidence of craniosynostosis noted as neonates without formal diagnosis until later. Two of these individuals have Noonan syndrome (PTPN11 and KRAS variants) and three individuals have Cardiofaciocutaneous syndrome (KRAS variants). Three individuals had single suture synostosis and two had multiple suture involvement. The most common sutures involved were sagittal (n = 3), followed by coronal (n = 3), and lambdoid (n = 2) sutures. This case series confirms craniosynostosis as one of the prenatal findings in individuals with RASopathies and emphasizes the importance of considering a RASopathy diagnosis in fetuses with multiple anomalies in combination with craniosynostosis.


Assuntos
Craniossinostoses , Cardiopatias Congênitas , Síndrome de Noonan , Recém-Nascido , Feminino , Humanos , Gravidez , Proteínas Proto-Oncogênicas p21(ras)/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Ultrassonografia Pré-Natal
6.
Am J Med Genet A ; 194(9): e63652, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38741564

RESUMO

Noonan syndrome is a so-called "RASopathy," that is characterized by short stature, distinctive facial features, congenital heart defects, and developmental delay. Of individuals with a clinical diagnosis of Noonan syndrome, 80%-90% have pathogenic variants in the known genes implicated in the disorder, but the molecular mechanism is unknown in the remaining cases. Heterozygous pathogenic variants of ETS2 repressor factor (ERF), which functions as a repressor in the RAS/MAPK signaling pathway, cause syndromic craniosynostosis. Here, we report an ERF frameshift variant cosegregating with a Noonan syndrome-like phenotype in a family. The proband was a 3-year-old female who presented with dysmorphic facial features, including proptosis, hypertelorism, slightly down slanted palpebral fissures, low-set posteriorly rotated ears, depressed nasal bridge, short stature, and developmental delay. Exome sequencing of the proband identified a heterozygous ERF variant [NM_006494.4: c.185del p.(Glu62Glyfs*15)]. Her mother and sister showed a similar phenotype and had the same heterozygous ERF variant. A large proportion of the previously reported patients with syndromic craniosynostosis and pathogenic ERF variants also showed characteristic features that overlap with those of Noonan syndrome. The present finding supports an association between heterozygous ERF variants and a Noonan syndrome-like phenotype.


Assuntos
Mutação da Fase de Leitura , Síndrome de Noonan , Proteínas Repressoras , Pré-Escolar , Feminino , Humanos , Craniossinostoses/genética , Craniossinostoses/patologia , Craniossinostoses/diagnóstico , Sequenciamento do Exoma , Heterozigoto , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Síndrome de Noonan/diagnóstico , Linhagem , Fenótipo , Proteínas Repressoras/genética , Criança
7.
Am J Med Genet A ; : e63854, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166407

RESUMO

We report three unrelated individuals with atypical clinical findings for cardio-facio-cutaneous (CFC) syndrome, all of whom have the same novel, heterozygous de novo p.H119Y (c.355 C>T) transition variant in MAP2K1, identified by exome sequencing. MAP2K1 encodes MEK1, dual specificity mitogen-activated protein kinase kinase 1, and is one of four genes in the canonical RAS/MAPK signal transduction pathway associated with CFC syndrome. The p.H119Y variant is a non-conservative amino acid substitution that is predicted to impact the tertiary protein structure, and it occurs at a position in the protein kinase domain of MAP2K1 that is highly conserved across species. The clinical findings in these three individuals include facial features that are nonclassical for CFC syndrome, extremely poor weight gain, absence of congenital cardiac defects or cardiomyopathy, normal cognition or only mild intellectual disabilities, normal hair, mild skin abnormalities, and consistent behavioral features of anxiety, photophobia, and sensory hypersensitivities. These individuals expand the phenotypic spectrum of MAP2K1-related RASopathy.

8.
Cell Commun Signal ; 22(1): 332, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886790

RESUMO

BACKGROUND: HRASKO/NRASKO double knockout mice exhibit exceedingly high rates of perinatal lethality due to respiratory failure caused by a significant lung maturation delay. The few animals that reach adulthood have a normal lifespan, but present areas of atelectasis mixed with patches of emphysema and normal tissue in the lung. METHODS: Eight double knockout and eight control mice were analyzed using micro-X-ray computerized tomography and a Small Animal Physiological Monitoring system. Tissues and samples from these mice were analyzed using standard histological and Molecular Biology methods and the significance of the results analyzed using a Student´s T-test. RESULTS: The very few double knockout mice surviving up to adulthood display clear craniofacial abnormalities reminiscent of those seen in RASopathy mouse models, as well as thrombocytopenia, bleeding anomalies, and reduced platelet activation induced by thrombin. These surviving mice also present heart and spleen hyperplasia, and elevated numbers of myeloid-derived suppressor cells in the spleen. Mechanistically, we observed that these phenotypic alterations are accompanied by increased KRAS-GTP levels in heart, platelets and primary mouse embryonic fibroblasts from these animals. CONCLUSIONS: Our data uncovers a new, previously unidentified mechanism capable of triggering a RASopathy phenotype in mice as a result of the combined removal of HRAS and NRAS.


Assuntos
GTP Fosfo-Hidrolases , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas p21(ras) , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ativação Plaquetária/genética , Baço/patologia , Baço/metabolismo , Proteínas Monoméricas de Ligação ao GTP
9.
Mol Biol Rep ; 51(1): 216, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281202

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder typified by various combination of numerous Café-au-lait macules, cutaneous and plexiform neurofibromas, freckling of inguinal or axillary region, optic glioma, Lisch nodules and osseous lesions. Cherubism is a rare genetic syndrome described by progressive swelling of the lower and/or upper jaw due to replacement of bone by fibrous connective tissue. Patients are reported in the literature with NF1 and cherubism-like phenotype due to the NF1 osseous lesions in the jaws. The purpose of this case report is the description of a young male genetically diagnosed with both NF1 and cherubism. METHODS AND RESULTS: A 9 years and six month old patient with clinical findings of NF1 and cherubism in whom both diseases were genetically confirmed, is presented. The patient was evaluated by a pediatrician, a pediatric endocrinologist, an ophthalmologist, and an oral and maxillofacial surgeon. A laboratory and hormonal screening, a histological examination, a chest X-ray, a magnetic resonance imaging (MRI) of the orbit and a digital panoramic radiography were performed. Genetic testing applying Whole Exome Sequencing was conducted. CONCLUSIONS: A novel and an already reported pathogenic variants were detected in NF1 and SH3BP2 genes, respectively. This is the first described patient with coexistence of NF1 and cherubism. The contribution of Next Generation Sequencing (NGS) in gene variant identification as well as the importance of close collaboration between laboratory scientists and clinicians, is highlighted. Both are essential for optimizing the diagnostic approach of patients with a complex phenotype.


Assuntos
Querubismo , Neurofibromatose 1 , Criança , Humanos , Masculino , Manchas Café com Leite/complicações , Manchas Café com Leite/genética , Querubismo/complicações , Querubismo/genética , Testes Genéticos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/diagnóstico , Fenótipo
10.
Pathol Int ; 74(9): 538-545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994806

RESUMO

Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous syndrome associated with systemic complications that involve multiple organs, including the skin, central nervous system, eyes, and skeleton. LNSS is considered to be caused by mosaic RAS gene mutation. In this report, we present an autopsy case of LNSS in a Japanese boy. The affected neonate had hydrops fetalis and was born at 28 weeks and 4 days of gestation, weighing 2104 g. He had bilateral inverted eyelids, verrucous linear nevus separated along Blaschko's line, myocardial hypertrophy, and pharyngeal constriction, and underwent intensive treatment in NICU for arrhythmia, hydrocephalus, and respiratory distress. The hydrocephalus progressed gradually and he died at the age of 181 days, 12 days after a sudden cardiac arrest and recovery. KRAS G12D mutation was found in a skin biopsy specimen but not in blood cells, suggesting a postzygotic mosaicism. Autopsy revealed novel pathological findings related to LNSS, including intracranial lipomatous hamartoma and mesenteric lymphangioma, in addition to previously reported findings such as multicystic dysplastic kidney. There was the limited expression of mutated KRAS protein in kidneys.


Assuntos
Autopsia , Mutação , Nevo Sebáceo de Jadassohn , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Masculino , Nevo Sebáceo de Jadassohn/patologia , Nevo Sebáceo de Jadassohn/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Recém-Nascido , Evolução Fatal
11.
Pediatr Dermatol ; 41(1): 76-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37486073

RESUMO

Encephalocraniocutaneous lipomatosis (ECCL) is a rare neurocutaneous disorder caused by somatic FGFR1 and KRAS variants. It shares significant phenotypic overlap with several closely related disorders caused by mutations in the RAS-MAPK pathway (mosaic RASopathies). We report a diagnostically challenging case of ECCL in which next-generation sequencing of affected tissue identified a pathologic FGFR1 p.K656E variant, thereby establishing a molecular diagnosis. Patients with FGFR1-associated ECCL carry a risk of developing malignant brain tumors; thus, genetic testing of patients with suspected ECCL has important management implications.


Assuntos
Oftalmopatias , Lipomatose , Síndromes Neurocutâneas , Humanos , Síndromes Neurocutâneas/diagnóstico , Síndromes Neurocutâneas/genética , Síndromes Neurocutâneas/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Lipomatose/diagnóstico , Lipomatose/genética , Lipomatose/terapia
12.
J Mol Cell Cardiol ; 178: 22-35, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948385

RESUMO

AIMS: RASopathies are caused by mutations in genes that alter the MAP kinase pathway and are marked by several malformations with cardiovascular disorders as the predominant cause of mortality. Mechanistic insights in the underlying pathogenesis in affected cardiac tissue are rare. The aim of the study was to assess the impact of RASopathy causing mutations on the human heart. METHODS AND RESULTS: Using single cell approaches and histopathology we analyzed cardiac tissue from children with different RASopathy-associated mutations compared to age-matched dilated cardiomyopathy (DCM) and control hearts. The volume of cardiomyocytes was reduced in RASopathy conditions compared to controls and DCM patients, and the estimated number of cardiomyocytes per heart was ∼4-10 times higher. Single nuclei RNA sequencing of a 13-year-old RASopathy patient (carrying a PTPN11 c.1528C > G mutation) revealed that myocardial cell composition and transcriptional patterns were similar to <1 year old DCM hearts. Additionally, immaturity of cardiomyocytes is shown by an increased MYH6/MYH7 expression ratio and reduced expression of genes associated with fatty acid metabolism. In the patient with the PTPN11 mutation activation of the MAP kinase pathway was not evident in cardiomyocytes, whereas increased phosphorylation of PDK1 and its downstream kinase Akt was detected. CONCLUSION: In conclusion, an immature cardiomyocyte differentiation status appears to be preserved in juvenile RASopathy patients. The increased mass of the heart in such patients is due to an increase in cardiomyocyte number (hyperplasia) but not an enlargement of individual cardiomyocytes (hypertrophy).


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Criança , Lactente , Humanos , Adolescente , Miócitos Cardíacos/metabolismo , Hiperplasia/metabolismo , Mutação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hipertrofia/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo
13.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553755

RESUMO

The ERK1/2 (also known as MAPK3 and MAPK1, respectively) signaling pathway is critical in organismal development and tissue morphogenesis. Deregulation of this pathway leads to congenital abnormalities with severe developmental dysmorphisms. The core ERK1/2 cascade relies on scaffold proteins, such as Shoc2 to guide and fine-tune its signals. Mutations in SHOC2 lead to the development of the pathology termed Noonan-like Syndrome with Loose Anagen Hair (NSLAH). However, the mechanisms underlying the functions of Shoc2 and its contributions to disease progression remain unclear. Here, we show that ERK1/2 pathway activation triggers the interaction of Shoc2 with the ubiquitin-specific protease USP7. We reveal that, in the Shoc2 module, USP7 functions as a molecular 'switch' that controls the E3 ligase HUWE1 and the HUWE1-induced regulatory feedback loop. We also demonstrate that disruption of Shoc2-USP7 binding leads to aberrant activation of the Shoc2-ERK1/2 axis. Importantly, our studies reveal a possible role for USP7 in the pathogenic mechanisms underlying NSLAH, thereby extending our understanding of how ubiquitin-specific proteases regulate intracellular signaling.


Assuntos
Síndrome dos Cabelos Anágenos Frouxos , Sistema de Sinalização das MAP Quinases , Síndrome de Noonan , Peptidase 7 Específica de Ubiquitina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Peptidase 7 Específica de Ubiquitina/genética
14.
Am J Med Genet A ; 191(8): 2074-2082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194190

RESUMO

Costello syndrome is a clinically recognizable, severe neurodevelopmental disorder caused by heterozygous activating variants in HRAS. The vast majority of affected patients share recurring variants affecting HRAS codons 12 and 13 and a relatively uniform phenotype. Here, we report the unique and attenuated phenotype of six individuals of an extended family affected by the HRAS variant c.176C>T p.(Ala59Gly), which, to our knowledge, has never been reported as a germline variant in patients so far. HRAS Alanine 59 has been previously functionally investigated as an oncogenic hotspot and the p.Ala59Gly substitution was shown to impair intrinsic GTP hydrolysis. All six individuals we report share a phenotype of ectodermal anomalies and mild features suggestive of a RASopathy, reminiscent of patients with Noonan syndrome-like disorder with loose anagen hair. All six are of normal intelligence, none have a history of failure to thrive or malignancy, and they have no known cardiac or neurologic pathologies. Our report adds to the previous reports of patients with rare variants affecting amino acids located in the SWITCH II/G3 region of HRAS and suggests a consistent, attenuated phenotype distinct from classical Costello syndrome. We propose the definition of a new distinct HRAS-related RASopathy for patients carrying HRAS variants affecting codons 58, 59, 60.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Humanos , Síndrome de Costello/genética , Síndrome de Costello/patologia , Fenótipo , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
Am J Med Genet A ; 191(2): 323-331, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308388

RESUMO

We systematically delineated the prenatal phenotype, and obstetrical and neonatal outcomes of the RASopathy cardio-facio-cutaneous (CFC) syndrome. A comprehensive, retrospective medical history survey was distributed to parents of children with confirmed CFC in collaboration with CFC International, Inc. Data were collected on CFC gene variant, maternal characteristics, pregnancy course, delivery, and neonatal outcomes with the support of medical records. We identified 43 individuals with pathogenic variants in BRAF (81%), MEK1 (14%), or MEK2 (5%) genes. The median age was 8.5 years. Hyperemesis gravidarum, gestational diabetes, gestational hypertension, and preeclampsia occurred in 5/43 (12%), 4/43 (9%), 3/43 (7%), and 3/43 (7%) of pregnancies, respectively. Second and third trimester ultrasound abnormalities included polyhydramnios, macrocephaly, macrosomia, and renal and cardiac abnormalities. Delivery occurred via spontaneous vaginal, operative vaginal, or cesarean delivery in 15/42 (36%), 7/42 (16%), and 20/42 (48%), respectively. Median gestational age at delivery was 37 weeks and median birth weight was 3501 grams. Germline pathogenic vaiants had mutiple congenital consequences including polyhydramnios, renal and cardiac abnormalities, macrosomia, and macrocephaly on second and third trimester ultrasound. Elevated rates of operative delivery and neonatal complications were also noted. Understanding and defining a prenatal phenotype may improve prenatal prognostic counseling and outcomes.


Assuntos
Displasia Ectodérmica , Cardiopatias Congênitas , Megalencefalia , Poli-Hidrâmnios , Humanos , Gravidez , Feminino , Estudos Retrospectivos , Macrossomia Fetal , Proteínas Proto-Oncogênicas B-raf/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Fácies , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia
16.
J Am Acad Dermatol ; 89(4): 764-773, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-33583608

RESUMO

Phacomatosis pigmentokeratotica (PPK) is defined by the association of papular nevus spilus arranged in a flag-like pattern and sebaceous nevus following Blaschko's lines. A systematic search of the worldwide literature retrieved 95 well-established PPK cases. An additional 30 cases were excluded for a number of reasons. Based on this study, we propose to rename PPK phacomatosis spilosebacea (PSS). Mosaic mutations of the HRAS gene are the only proven cause of PSS. The extracutaneous abnormalities of PSS result from various degrees of intermingling of Schimmelpenning syndrome and papular nevus spilus syndrome. PSS seems to be a condition at particularly high risk of developing basal cell carcinoma, urogenital malignancies, and vitamin D-resistant hypophosphatemic rickets. Extracutaneous abnormalities were detected in approximately 75% of PSS cases.


Assuntos
Carcinoma Basocelular , Lentigo , Síndromes Neurocutâneas , Nevo Pigmentado , Neoplasias Cutâneas , Esclerose Tuberosa , Humanos , Síndromes Neurocutâneas/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Nevo Pigmentado/genética , Nevo Pigmentado/patologia , Carcinoma Basocelular/patologia
17.
Eur J Pediatr ; 182(8): 3789-3793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37272991

RESUMO

This study is aimed at describing the findings of high-resolution nerve ultrasound in children with Noonan syndrome (NS) and related disorders experiencing pain in their legs. This retrospective cohort study was conducted in the NS expert center of the Radboud University Medical Center in the Netherlands. Patients were eligible if they were younger than 18 years, clinically and genetically diagnosed with NS or a NS related disorder, and experienced pain in their legs. Anamneses and physical examination were performed in all children. In addition, high-resolution nerve ultrasound was used to assess nerve hypertrophy and, if needed, complemented spinal magnetic resonance imaging was performed. Over a period of 6 months, four children, three with NS and one child with NS with multiple lentigines, who experienced pain of their legs were eligible for inclusion. Muscle weakness was found in two of them. High-resolution nerve ultrasound showed (localized) hypertrophic neuropathy in all patients. One child underwent additional spinal magnetic resonance imaging, which showed profound thickening of the nerve roots and plexus.  Conclusion: In the four children included with a NS and related disorders, pain was concomitant with nerve hypertrophy, which suggests an association between these two findings. The use of high-resolution nerve ultrasound and spinal magnetic resonance imaging might result in better understanding of the nature of this pain and the possible association to nerve hypertrophy in patients with NS and related disorders. What is Known: • Children with Noonan syndrome and related disorders may report pain in their legs, which is often interpreted as growing pain. • Some adults with Noonan syndrome and related disorders have hypertrophic neuropathy as a possible cause of neuropathic pain. What is New: • This is the first study using high-resolution nerve ultrasound in children with Noonan syndrome and related disorders experiencing pain in their legs. • Hypertrophic neuropathy was diagnosed as possible cause of pain in four children with Noonan syndrome and related disorders.


Assuntos
Síndrome de Noonan , Adulto , Humanos , Criança , Síndrome de Noonan/complicações , Síndrome de Noonan/diagnóstico , Estudos Retrospectivos , Hipertrofia/complicações , Dor/etiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11
18.
Biochemistry (Mosc) ; 88(7): 880-891, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751861

RESUMO

Received January, 31, 2023 Revised March, 16, 2023 Accepted March, 18, 2023 Widespread use of the next-generation sequencing (NGS) technologies revealed that a significant percentage of tumors in children develop as a part of monogenic hereditary diseases. Predisposition to the development of pediatric neoplasms is characteristic of a wide range of conditions including hereditary tumor syndromes, primary immunodeficiencies, RASopathies, and phakomatoses. The mechanisms of tumor molecular pathogenesis are diverse and include disturbances in signaling cascades, defects in DNA repair, chromatin remodeling, and microRNA processing. Timely diagnosis of tumor-associated syndromes is important for the proper choice of cancer treatment, genetic counseling of families, and development of the surveillance programs. The review describes the spectrum of neoplasms characteristic of the most common syndromes and molecular pathogenesis of these diseases.

19.
J Med Ultrasound ; 31(1): 13-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180632

RESUMO

Prenatal diagnosis of euploid increased nuchal translucency (NT) remains a challenge to obstetricians and genetic counselors, although increased euploid NT at prenatal diagnosis can be associated with a favorable outcome. Prenatal diagnosis of euploid increased NT should include a differential diagnosis of pathogenetic copy number variants and RASopathy disorders (RDs) including Noonan syndrome. Therefore, chromosomal microarray analysis, whole-exome sequencing, RASopathy-disorder testing, and protein-tyrosine phosphatase nonreceptor type 11 gene testing may be necessary under such a circumstance. In this report, a comprehensive review of RDs with its prenatal ultrasound findings and genotype-phenotype correlations is presented.

20.
Am J Med Genet C Semin Med Genet ; 190(4): 530-540, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533693

RESUMO

RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.


Assuntos
Síndrome de Costello , Neoplasias , Síndrome de Noonan , Humanos , Síndrome de Noonan/epidemiologia , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Síndrome de Costello/epidemiologia , Síndrome de Costello/genética , Incidência , Estudos Retrospectivos , Proteínas ras/genética , Neoplasias/epidemiologia , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA