RESUMO
Whole genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that É-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR Insensitive 1) and BRL1/3 (BRI1-likes 1/3) derived by É-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
RESUMO
Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Furanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hidrolases/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases/genética , Mutação , Filogenia , Ligação ProteicaRESUMO
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.
Assuntos
Receptores de Amina Biogênica , Receptores Odorantes , Aminas , Animais , Encéfalo/metabolismo , Peixes/genética , Mamíferos/genética , Filogenia , Receptores de Amina Biogênica/genética , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genéticaRESUMO
Sensory receptor evolution can imply trade-offs between ligands, but the extent to which such trade-offs occur and the underlying processes shaping their evolution is not well understood. For example, hummingbirds have repurposed their ancestral savory receptor (T1R1-T1R3) to detect sugars, but the impact of this sensory shift on amino acid perception is unclear. Here, we use functional and behavioral approaches to show that the hummingbird T1R1-T1R3 acts as a bifunctional receptor responsive to both sugars and amino acids. Our comparative analyses reveal substantial functional diversity across the hummingbird radiation and suggest an evolutionary timeline for T1R1-T1R3 retuning. Finally, we identify a novel form of synergism between sugars and amino acids in vertebrate taste receptors. This work uncovers an unexplored axis of sensory diversity, suggesting new ways in which nectar chemistry and pollinator preferences can coevolve.
Assuntos
Papilas Gustativas , Paladar , Animais , Aves/metabolismo , Ligantes , Receptores Acoplados a Proteínas G , Papilas Gustativas/metabolismoRESUMO
Pitviper sensory perception incorporates diverse stimuli through the integration of trichromatic color vision, bifocal heat-sensing, and dual-system chemoperception. Chemoperception, or olfaction, is mediated by chemoreceptors in the olfactory bulb and the vomeronasal organ, but the true genomic complexity of the gene families and their relative contributions is unknown. A full genomic accounting of pitviper chemoperception directly complements our current understanding of their venoms by generating a more complete polyphenic representation of their predatory arsenal. To characterize the genetic repertoire of pitviper chemoperception, we analyzed a full-genome assembly for Crotalus adamanteus, the eastern diamondback rattlesnake. We identified hundreds of genes encoding both olfactory receptors (ORs; 362 full-length genes) and type-2 vomeronasal receptors (V2Rs; 430 full-length genes). Many chemoreceptor genes are organized into large tandem repeat arrays. Comparative analysis of V2R orthologs across squamates demonstrates how gene array expansion and contraction underlies the evolution of the chemoreceptor repertoire, which likely reflects shifts in life history traits. Chromosomal assignments of chemosensory genes identified sex chromosome specific chemoreceptor genes, providing gene candidates underlying observed sex-specific chemosensory-based behaviors. We detected widespread episodic evolution in the extracellular, ligand-binding domains of both ORs and V2Rs, suggesting the diversification of chemoreceptors is driven by transient periods of positive selection. We provide a robust genetic framework for studying pitviper chemosensory ecology and evolution.
Assuntos
Receptores Odorantes , Órgão Vomeronasal , Animais , Crotalus/genética , Feminino , Genômica , Humanos , Masculino , Receptores Odorantes/genética , Olfato/genéticaRESUMO
Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily.
Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Anfioxos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Sequência Conservada , Evolução Molecular , Hormônio Liberador de Gonadotropina/química , Humanos , Dados de Sequência Molecular , Sistema Nervoso/metabolismo , Especificidade de Órgãos , Filogenia , Receptores LHRH/metabolismo , Transdução de Sinais , SinteniaRESUMO
This review will outline what is known about the origins and evolution of type 2 cytokines and their receptors in vertebrates. It takes advantage of the recent advances made in gene identification from the many vertebrate genomes that have now been sequenced. It will also describe what functional studies have been performed to date, giving clues to the role of these molecules and signalling pathways in non-mammalian vertebrates.
Assuntos
Regulação da Expressão Gênica , Interleucina-13/fisiologia , Interleucina-4/fisiologia , Receptores de Citocinas/fisiologia , Sequência de Aminoácidos , Animais , Citocinas/fisiologia , Evolução Molecular , Genoma , Humanos , Interleucina-13/genética , Interleucina-4/genética , Ligantes , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Receptores de Citocinas/genética , Homologia de Sequência de Aminoácidos , VertebradosRESUMO
Plants use surface resident and intracellular immune receptors to provide robust immunity against microbial infections. The contribution of the two receptor types to plant immunity differs spatially and temporally. The ongoing identification of new plant cell surface immune receptors and their microbial-derived immunogenic ligands reveal a previously unexpected complexity of plant surface sensors involved in the detection of specific microbial species. Comparative analyses of the plant species distribution of cell surface immune receptors indicate that plants harbor larger sets of genus- or species-specific surface receptors in addition to very few widespread pattern sensors. Leucine-rich repeat surface and intracellular immune sensors emerge as two polymorphic receptor classes whose evolutionary trajectories appear to be linked. This is consistent with their functional cooperativity in providing full plant immunity.
Assuntos
Células Vegetais , Plantas , Plantas/genética , Imunidade Vegetal/genética , Doenças das PlantasRESUMO
Aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, first appears in lungfish, which are lobe-finned fish that are forerunners of terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water, sodium and potassium, which was critical in the conquest of land by vertebrates. We studied transcriptional activation of the slender African lungfish MR by aldosterone, other corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone have half-maximal responses (EC50 s) below 1 nM and are potential physiological mineralocorticoids. In contrast, EC50 s for corticosterone and cortisol were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the DNA-binding, hinge and steroid-binding domains, had a stronger response to corticosteroids and progesterone than full-length lungfish MR, indicating that the N-terminal domain represses steroid activation of lungfish MR, unlike human MR in which the N-terminal domain contains an activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length lungfish MR, leading us to propose that lungfish MR also functions as a GR.
Assuntos
Aldosterona/farmacologia , Dexametasona/farmacologia , Proteínas de Peixes/genética , Peixes/genética , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Animais , Corticosterona/farmacologia , Cortodoxona/farmacologia , Desoxicorticosterona/farmacologia , Eplerenona/farmacologia , Proteínas de Peixes/agonistas , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Expressão Gênica , Hidrocortisona/farmacologia , Cinética , Progesterona/farmacologia , Domínios Proteicos , Engenharia de Proteínas/métodos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espironolactona/farmacologia , Triancinolona/farmacologiaRESUMO
Orthologs of human glucocorticoid receptor (GR) and human mineralocorticoid receptor (MR) first appear in cartilaginous fishes. Subsequently, the MR and GR diverged to respond to different steroids: the MR to aldosterone and the GR to cortisol and corticosterone. We report that cortisol, corticosterone and aldosterone activate full-length elephant shark GR, and progesterone, which activates elephant shark MR, does not activate elephant shark GR. However, progesterone inhibits steroid binding to elephant shark GR, but not to human GR. Together, this indicates partial functional divergence of elephant shark GR from the MR. Deletion of the N-terminal domain (NTD) from elephant shark GR (truncated GR) reduced the response to corticosteroids, while truncated and full-length elephant shark MR had similar responses to corticosteroids. Swapping of NTDs of elephant shark GR and MR yielded an elephant shark MR chimera with full-length GR-like increased activation by corticosteroids and progesterone compared to full-length elephant shark MR. Elephant shark MR NTD fused to GR DBD + LBD had similar activation as full-length MR, indicating that the MR NTD lacked GR-like NTD activity. We propose that NTD activation of human GR evolved early in GR divergence from the MR.
Assuntos
Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/metabolismo , Regulação Alostérica , Animais , Corticosterona/metabolismo , Corticosterona/farmacologia , Relação Dose-Resposta a Droga , Evolução Molecular , Células HEK293 , Antagonistas de Hormônios/farmacologia , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Mifepristona/farmacologia , Progesterona/administração & dosagem , Progesterona/metabolismo , Progesterona/farmacologia , Domínios Proteicos , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tubarões , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologiaRESUMO
Previously, it was proposed that protein receptors evolved from self-binding peptides that were encoded by self-interacting gene segments (inverted repeats) widely dispersed in the genome. In addition, self-association of the peptides was thought to be mediated by regions of amino acid sequence similarity. To extend these ideas, special features of receptors have been explored, such as their degree of homology to other proteins, and the arrangement of their genes for clues about their evolutionary origins and dynamics in the genome. As predicted, BLASTP searches for homologous proteins detected a greater number of unique hits for queries with receptor sequences than for sequences of randomly-selected, non-receptor proteins. This suggested that the building blocks (cohesion modules) for receptors were duplicated, dispersed, and maintained in the genome, due to structure/function relationships discussed here. Furthermore, the genes coding for a representative panel of receptors participated in a larger number of gene-gene interactions than for randomly-selected genes. This could conceivably reflect a greater evolutionary conservation of the receptor genes, with their more extensive integration into networks along with inherent properties of the genes themselves. In support of the latter possibility, some receptor genes were located in active areas of adaptive gene relocation/amalgamation to form functional blocks of related genes. It is suggested that adaptive relocation might allow for their joint regulation by common promoters and enhancers, and affect local chromatin structural domains to facilitate or repress gene expression. Speculation is included about the nature of the coordinated communication between receptors and the genes that encode them.
RESUMO
The mineralocorticoid receptor (MR) and its kin, the glucocorticoid receptor (GR) evolved from an ancestral corticoid receptor (CR) in a cyclostome (jawless fish) through gene duplication and divergence. Distinct MR and GR orthologs first appear in cartilaginous fishes, such as sharks, skates, rays and chimaeras. Although aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, is not synthesized by cyclostomes or cartilaginous fishes, cyclostome CR and cartilaginous fish MR and GR are activated by aldosterone. Aldosterone first appears in lungfish, lobe-finned fish that are forerunners of terrestrial vertebrates. Further sequence divergence of the MR and GR in terrestrial vertebrates led to emergence of aldosterone as a selective ligand for the MR. Interestingly, ray-finned fish do not synthesize aldosterone, leaving the identity of their physiological mineralocorticoid(s) unresolved. Several steroids: cortisol, 11-deoxycortisol, corticosterone, 11-deoxycorticosterone and progesterone activate fish MR and are potential mineralocorticoids in ray-finned fish. Here we review the evolution of the MR in cartilaginous fish, terrestrial vertebrates and ray-finned fish, and discuss new insights into progesterone activation of the MR in ray-finned fish.
Assuntos
Aldosterona/metabolismo , Evolução Molecular , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Vertebrados/fisiologia , Aldosterona/genética , Animais , Regulação da Expressão Gênica , Vertebrados/genéticaRESUMO
Many actions of estradiol (E2), the principal physiological estrogen in vertebrates, are mediated by estrogen receptor-α (ERα) and ERß. An important physiological feature of vertebrate ERs is their promiscuous response to several physiological steroids, including estradiol (E2), Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol. A novel structural characteristic of Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol is the presence of a C19 methyl group, which precludes the presence of an aromatic A ring with a C3 phenolic group that is a defining property of E2. The structural diversity of these estrogens can explain the response of the ER to synthetic chemicals such as bisphenol A and DDT, which disrupt estrogen physiology in vertebrates, and the estrogenic activity of a variety of plant-derived chemicals such as genistein, coumestrol, and resveratrol. Diversity in the A ring of physiological estrogens also expands potential structures of industrial chemicals that can act as endocrine disruptors. Compared to E2, synthesis of 27-hydroxycholesterol and Δ5-androstenediol is simpler, leading us, based on parsimony, to propose that one or both of these steroids or a related metabolite was a physiological estrogen early in the evolution of the ER, with E2 assuming this role later as the canonical estrogen. In addition to the well-studied role of the ER in reproductive physiology, the ER also is an important transcription factor in non-reproductive tissues such as the cardiovascular system, kidney, bone, and brain. Some of these ER actions in non-reproductive tissues appeared early in vertebrate evolution, long before the emergence of mammals.
Assuntos
Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Compostos Fitoquímicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Androstenodiol/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , DDT/toxicidade , Humanos , Hidroxicolesteróis/metabolismo , Anfioxos , Fenóis/toxicidadeRESUMO
The mineralocorticoid receptor (MR) is descended from a corticoid receptor (CR), which has descendants in lamprey and hagfish, cyclostomes (jawless fish), a taxon that evolved at the base of the vertebrate line. A distinct MR and GR first appear in cartilaginous fishes (Chondrichthyes), such as sharks, skates, rays and chimeras. Skate MR has a strong response to corticosteroids that are mineralocorticoids and glucocorticoids in humans. The half-maximal responses (EC50s) for skate MR for the mineralocorticoids aldosterone and 11-deoxycorticosterone are 0.07 nM and 0.03 nM, respectively. EC50s for the glucocorticoids cortisol and corticosterone are 1 nM and 0.09 nM, respectively. The physiological mineralocorticoid in ray-finned fish, which do not synthesize aldosterone, is not fully understood because several 3-ketosteroids, including cortisol, 11-deoxycortisol, corticosterone, 11-deoxycorticosterone and progesterone are transcriptional activators of fish MR. Further divergence of the MR and GR in terrestrial vertebrates, which synthesize aldosterone, led to emergence of aldosterone as a selective ligand for the MR. Here, we combine sequence analysis of the CR and vertebrate MRs and GRs, analysis of crystal structures of human MR and GR and data on transcriptional activation by 3-ketosteroids of wild-type and mutant MRs and GRs to investigate the evolution of selectivity for 3-ketosteroids by the MR in terrestrial vertebrates and ray-finned fish, as well as the basis for binding of some glucocorticoids by human MR and other vertebrate MRs.
Assuntos
Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mineralocorticoides/metabolismo , Mineralocorticoides/farmacologiaRESUMO
Biochemical studies show that binding of co-activators to the progesterone receptor [PR] is an important mechanism for regulating of PR-mediated gene transcription. Unfortunately, unlike other steroid receptors, the PR has not been crystalized with a co-activator. Fortunately, the PR has strong structural similarity to the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR], which have been crystalized with co-activators. This similarity allowed us to construct 3D models of the PR with steroid co-activator 1-Box 4 [SRC1-4] and transcriptional intermediary factor 2-Box 3 [TIF2-3], which were extracted from the crystal structures of human MR and GR, respectively. Comparisons of 3D models of human PR with SRC1-4 and TIF2-3 and human MR with SRC1-4 and GR with TIF2-3 identified some unique interactions between the PR and SRC1-4 and TIF2-3. An evolutionary analysis of the sequence of the co-activator binding groove in human PR found strong conservation in terrestrial vertebrates. However, there are some differences between human PR and the PRs in lamprey, shark and fishes. These differences among the PRs and between the PR, MR and GR may have contributed to the evolution of specificity for progestins, mineralocorticoids and glucocorticoids in vertebrates.
Assuntos
Modelos Moleculares , Coativadores de Receptor Nuclear/química , Receptores de Progesterona/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Sequência Conservada , Evolução Molecular , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Glucocorticoides/química , Receptores de Mineralocorticoides/química , Receptores de Progesterona/genética , Homologia Estrutural de Proteína , TermodinâmicaRESUMO
Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to corticosteroids, we conclude that the mechanism(s) for selectivity of GR for cortisol and corticosterone and the specificity of aldosterone for MR are incompletely understood. This article is part of a Special Issue entitled 'CSR 2013'.