Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 56(11): 7017-7028, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302359

RESUMO

The molecular composition of atmospheric particulate matter (PM) in the urban environment is complex, and it remains a challenge to identify its sources and formation pathways. Here, we report the seasonal variation of the molecular composition of organic aerosols (OA), based on 172 PM2.5 filter samples collected in Beijing, China, from February 2018 to March 2019. We applied a hierarchical cluster analysis (HCA) on a large nontarget-screening data set and found a strong seasonal difference in the OA chemical composition. Molecular fingerprints of the major compound clusters exhibit a unique molecular pattern in the Van Krevelen-space. We found that summer OA in Beijing features a higher degree of oxidation and a higher proportion of organosulfates (OSs) in comparison to OA during wintertime, which exhibits a high contribution from (nitro-)aromatic compounds. OSs appeared with a high intensity in summer-haze conditions, indicating the importance of anthropogenic enhancement of secondary OA in summer Beijing. Furthermore, we quantified the contribution of the four main compound clusters to total OA using surrogate standards. With this approach, we are able to explain a small fraction of the OA (∼11-14%) monitored by the Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM). However, we observe a strong correlation between the sum of the quantified clusters and OA measured by the ToF-ACSM, indicating that the identified clusters represent the major variability of OA seasonal cycles. This study highlights the potential of using nontarget screening in combination with HCA for gaining a better understanding of the molecular composition and the origin of OA in the urban environment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
2.
Ecotoxicol Environ Saf ; 208: 111702, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396033

RESUMO

Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/química , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Tamanho da Partícula , Material Particulado/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Environ Geochem Health ; 43(11): 4601-4626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33913083

RESUMO

Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles' properties (size, morphology and chemical composition analyzed using a scanning electron microscope fitted with an energy-dispersive spectrometer) and microbiological characteristics. The content of particles of different chemical compositions larger than 2.5 µm was low. Considering the number of the particles, submicron particles strongly dominated with a high content of ultrafine particles (nanoparticles). Tar ball-type particles were relatively common in the studied samples, while soot was the dominant component. Soot was present as small agglomerates composed of few particles, but also as bigger agglomerates. Metal-containing particles of various chemical characteristics were abundant, with transition metals commonly occurring in these particles. The physicochemical characteristics of aerosols indicate that despite a relatively low mass concentration, their adverse health impact could be very strong because of the high content of nanoparticles, the abundance of soot and other fuel combustion-related particles, and the high incidence of transition metal-rich particles. Microbiological analysis was based on cultures on both solid and liquid agar. The MALDI-TOF method was used for species identification-for bacteria and fungi. Twelve different species of bacteria were isolated from the collected samples of aerosols. The most frequently isolated species was Gram-positive sporulating Bacillus licheniformis. The isolated mold fungi were of the genus Aspergillus.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Tamanho da Partícula , Material Particulado/análise , Polônia
4.
Atmos Environ (1994) ; 242: 117835, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834729

RESUMO

Ultrafine particles with diameters less than 100 nm suspended in the air are a topic of interest in air quality and climate sciences. Sub-10 nm particles are of additional interest due to their health effects and contribution to particle growth processes. Ambient measurements were carried out at North Carolina State University in Raleigh, NC between April to June 2019 and November 2019 to May 2020 to investigate the temporal variability of size distribution and number concentration of ultrafine particles. A mobile lab was deployed between March and May 2020 to characterize the spatial distribution of sub-10 nm particle number concentration. New particle formation and growth events were observed regularly. Also observed were direct emissions of sub-10 nm particles. Analysis against meteorological variables, gas-phase species, and particle concentrations show that the sub-10nm particles dominated number concentration during periods of low planetary boundary layer height, low solar radiation, and northeast winds. The spatial patterns observed during mobile deployments suggest that multiple temporally stable and spatially confined point sources of sub-10 nm particles are present within the city. These sources likely include the campus utility plants and the Raleigh-Durham International Airport. Additionally, the timing of data collection allowed for investigation of variations in the urban aerosol number size distribution due to reduced economic activity during the COVID-19 pandemic.

5.
Inhal Toxicol ; 32(13-14): 494-502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33283557

RESUMO

OBJECTIVES: The aim of this study was to provide particle number and mass deposition rates of submicron particles in the human airways as inputs for toxicology and other areas of aerosol science. METHODS: Scanning Mobility Particle Spectrometer was used to measure the number concentrations and size distributions of the ultrafine urban particles during summer and winter in Budapest. The Stochastic Lung Model (SLM) was applied to calculate number and mass deposition rates of the inhaled particles in different anatomical regions of the airways. RESULTS: Our calculations revealed that for the selected days in summer and winter with PM10 values below the health limit 4.7 and 18.4 billion particles deposited in the bronchial region of the lungs. The deposition in the acinar region of the lung was even higher, 8.3 billion particles for the summer day, and 33.8 billion particles for winter day. CONCLUSIONS: Our results clearly demonstrate that large daily numbers of urban UFPs are deposited in the respiratory tract, which may play a key role in the health effects of particulate matter (PM) inhalation. Present results, connecting the ambient exposure parameters with the local burden of the airway epithelium, can be useful inputs of in vitro cell culture experiments. By the combination of urban UFP monitoring and numerical modeling of particle deposition with toxicological studies, the health risks of urban aerosols could be better assessed. The use of UFP data in addition to PM10 and PM2.5 in the epidemiological studies would also be indicated.


Assuntos
Poluentes Atmosféricos/análise , Pulmão/metabolismo , Modelos Biológicos , Material Particulado/análise , Adulto , Cidades , Humanos , Hungria , Masculino , Tamanho da Partícula , Estações do Ano
6.
J Environ Sci (China) ; 89: 238-251, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892396

RESUMO

Air pollution causes deleterious effects on human health with aerosols being among the most polluting agents. The objective of this work is the characterization of the PM2.5 and PM10 aerosol mass in the atmosphere. The methods of analysis include WD-XRF and EDS. Data were correlated with meteorological information and air mass trajectories (model HYSPLIT) by multivariate analysis. A morphological structural analysis was also carried out to identify the probable sources of atmospheric aerosols in the city of São José do Rio Preto, Brazil. The mean mass concentration values obtained were 24.54 µg/m3 for PM10, above the WHO annual standard value of 20 µg/m3 and 10.88 µg/m3 for PM2.5 whose WHO recommended limit is 10 µg/m3. WD-XRF analysis of the samples revealed Si and Al as major components of the coarse fraction. In the fine fraction, the major elements were Al and S. The SEM-FEG characterization allowed identifying the morphology of the particles in agglomerates, ellipsoids and filaments in the PM10, besides spherical in the PM2.5. The analysis by EDS corroborated WD-XRF results, identifying the crustal elements, aluminosilicates and elements of anthropogenic origin in the coarse fraction. For the fine fraction crustal elements were also identified; aluminosilicates, black carbon and spherical particles (C and O) originating from combustion processes were predominant. The use of multivariate analysis to correlate air mass trajectories with the results of the morpho-structural characterization of the particulate matter allowed confirmation of the complex composition of the particles resulting from the combination of both local and long-distance sources.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado/análise , Brasil , Cidades , Humanos , Tamanho da Partícula , Estações do Ano
7.
Environ Pollut ; 359: 124596, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053796

RESUMO

Plant protection products (PPPs) play a fundamental role in the maintenance of agricultural fields and private/public green areas, however they can contaminate zones nearby the application point due to wind drift, resuspension, and evaporation. Several studied have deepened the relationship between PPPs and living beings' health, suggesting that these products might have a negative influence. Some PPPs belong to the class of Emergent Contaminants, which are compounds whose knowledge on the environmental distribution and influence is limited. These issues are even more stressed in urban aerosol, due to the high residential density that characterizes this area. Therefore, this study assessed the contamination caused by polar PPPs, such as herbicides (i.e., Glyphosate), fungicides (i.e., Fosetyl Aluminium), and growth regulators (i.e. Maleic Hydrazide), in size-segregated urban aerosol and evaluated their concentration variability with respect to atmospheric parameters (humidity, temperature, rain). Moreover, hypotheses on possible sources were formulated, exploiting also back-trajectories of air masses. A total of six PPPs were found in the samples: glyphosate was more present in the coarse fraction (2.5-10 µm), Fosetyl Aluminium, chlorate and perchlorate were more present in the coarse/fine fractions (10-1 µm), while cyanuric acid and phosphonic acid were mostly concentrated in the fine/ultrafine fractions (<1 µm). While for the first four we suspect of local sources, such as private gardening, the two latter might derive from the entire Po Valley, a highly polluted area in the North of Italy, and from degradation of other substances.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Glicina , Glifosato , Herbicidas , Glicina/análogos & derivados , Glicina/análise , Aerossóis/análise , Herbicidas/análise , Poluentes Atmosféricos/análise , Cidades , Fungicidas Industriais/análise
8.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417516

RESUMO

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Compostos de Amônio/análise , Isótopos de Nitrogênio/análise , Emissões de Veículos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis e Gotículas Respiratórios , Amônia/análise , Material Particulado/análise , China
9.
Sci Total Environ ; 926: 171820, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513857

RESUMO

Atmospheric brown carbon (BrC) aerosols were investigated at two urban sites in southern (Hefei) and northern (Shijiazhuang) China during summer and winter of 2019-2020 to explore regional variability in their compositional and optical properties. Organic matter in ambient PM2.5 samples were characterized at molecular level using ultrahigh performance liquid chromatography coupled with a diode array detector and an Orbitrap mass spectrometer. Although the molecular composition of organic aerosols varied substantially over different ambient environments, they were mainly composed by CHO and CHON species in positive ionization mode while CHO and CHOS species in negative mode. The mass absorption coefficients of BrC aerosols at wavelength range 250-450 nm were relatively higher for winter samples in both cities and for Shijiazhuang samples in both seasons, partly attributed to the higher concentration levels of anthropogenic air pollutants in these environments. The absorption Ångström exponents further revealed that BrC aerosols in winter seasons and in Shijiazhuang had a greater capacity of absorption at shorter wavelengths. A total of 26 BrC species with strong absorption were unambiguously identified from different environments, which mainly consisted of CHO, CHON, and CHN species and had higher degrees of unsaturation and lower degrees of oxidation. The presence and abundance of these BrC species varied dynamically across the seasons and cities, with a greater number of species presented in the winter of Shijiazhuang. The BrC species together contributed 12-26 % in the total absorbance of light-absorbing organic components at 250-450 nm. This study highlights the regional differences in BrC properties influenced by the sources and atmospheric processes, which should be taken into account to assess their climate impacts.

10.
Environ Sci Pollut Res Int ; 28(42): 59486-59498, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33844139

RESUMO

To access the sources of air pollutants is crucial to control atmospheric pollution in urban areas, minimizing human exposure. Particulate matter is a pollutant of great concern making its chemical and morpho-structural characterization of enormous importance. The present work aims at the characterization of atmospheric PM10 and PM2.5. Data of the aerosol mass concentration was correlated by multivariate analysis with water-soluble ion fraction composition accessed by ion chromatography (IC), as well as with meteorological information and air mass backward trajectories. The gravimetric analysis presented average values 3 to 4 times higher than the guide values recommended by the World Health Organization (WHO). A morpho-structural analysis by SEM/FEG coupled to EDS was also carried out identifying the coarse fraction elements from minerals and from soil resuspension organic spherical particles that originated from combustion processes as well as Ti, associated with long-distance transportation. In the fine fraction, Zn with origin probably in tires and vehicle brakes was found. These origins were confirmed by the air masses' backward trajectories obtained by the HYSPLIT model (NOAA). This study contributes to a better understanding of the complex composition of the particulate material in the atmosphere of Araraquara City, resulting from the combination of local and long-distance sources, and serves as a basis for the comparison with future studies related to the air quality at this and other regions in Brazil and in the world.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Brasil , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
12.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498524

RESUMO

Urban particulate matter (UPM) is recognized as a grave public health problem worldwide. Although a few studies have linked UPM to ocular surface diseases, few studies have reported on retinal dysfunction. Thus, the aim of the present study was to evaluate the influence of UPM on the retina and identify the main mechanism of UPM toxicity. In this study, we found that UPM significantly induced cytotoxicity with morphological changes in ARPE-19 human retinal pigment epithelial (RPE) cells and increased necrosis and autophagy but not apoptosis. Furthermore, UPM significantly increased G2/M arrest and simultaneously induced alterations in cell cycle regulators. In addition, DNA damage and mitochondrial dysfunction were remarkably enhanced by UPM. However, the pretreatment with the potent reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) effectively suppressed UPM-mediated cytotoxicity, necrosis, autophagy, and cell cycle arrest. Moreover, NAC markedly restored UPM-induced DNA damage and mitochondrial dysfunction. Meanwhile, UPM increased the expression of mitophagy-regulated proteins, but NAC had no effect on mitophagy. Taken together, although further studies are needed to identify the role of mitophagy in UPM-induced RPE injury, the present study provides the first evidence that ROS-mediated cellular damage through necrosis and autophagy is one of the mechanisms of UPM-induced retinal disorders.

13.
Environ Sci Pollut Res Int ; 27(12): 14124-14137, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043252

RESUMO

The characterization of saccharidic compounds in atmospheric aerosols is important in order to retrieve information about organic carbon sources and their transport pathways through the atmosphere. In this study, composition and sources of saccharides in PM10 were determined in a South Asian megacity (Faisalabad) during the year 2015 - 2016. PM10 sampled on quartz filters was analyzed by anion exchange chromatography for the selected saccharidic compounds. The average PM10 concentration was found to be 744 ± 392 µg m-3, exceeding the daily limits proposed by Pak-EPA (150 µg m-3), US-EPA (150 µg m-3), and WHO (50 µg m-3). The average total saccharidic concentration was found to be 2820 ± 2247 ng m-3. Among the different saccharidic categories, anhydrosugars were the most abundant in concentration followed by primary sugars and sugar alcohols. The correlation and principal component analysis indicated emissions from biomass combustion, soil suspensions from areas such as farmlands having high microorganism activity, and biogenic emissions such as airborne fungal spores and vegetation detritus as major sources of saccharides in the aerosol samples.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise , Monitoramento Ambiental , Estações do Ano
14.
Sci Total Environ ; 728: 138013, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361103

RESUMO

High-time-resolution (3-hour) PM2.5 samples were collected simultaneously from the rural and urban areas in the Yangtze River Delta region during winter. The aerosol samples were analyzed for carbonaceous components, organic tracers, water-soluble inorganic ions and stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions of total carbon and total nitrogen. The values of PM2.5 and secondary organic carbon (SOC) for both sampling sites were observed 2 times higher in haze events compare to those in clear days, implying severe pollution occurred by photochemical oxidation during haze periods. The PM mass of rural samples showed similar temporal trend and significant correlation with the urban PM, reflecting pollution sources or their formation process are most likely identical. Diurnal variations of PM2.5 and carbonaceous components revealed that pollution levels increased at daytime due to the photochemical oxidation. In addition, SOC and OC were influenced by the relative humidity (RH%) and temperature (T °C), indicating that such meteorological factors play important roles in the occurrence of regional air pollution. The concentrations of levoglucosan, polycyclic aromatic hydrocarbons, hopanes, and n-alkanes were 625 ± 456 and 519 ± 301 ng m-3, 32.6 ± 24.7 and 28.7 ± 20.1 ng m-3, 1.83 ± 1.51 and 1.26 ± 1.34 ng m-3, and 302 ± 206 and 169 ± 131 ng m-3 for rural and urban samples, respectively. Levoglucosan is the most abundant organic compounds, exhibited 2-3 times higher in haze than clear days, suggesting biomass burning (BB) emission substantially affects the haze pollution in winter. Furthermore, NO3- was the dominant ionic species followed by SO42-, NH4+, Cl- and other minor species for both sites. The δ13C and δ15N values demonstrate that anthropogenic activities such as fossil fuel combustion and BB are the major sources for carbonaceous and nitrogenous aerosols. This study implies that both the regional anthropogenic emissions and meteorological conditions influenced the regional haze formation, leading enhancement of pollution levels in eastern China during winter.

15.
Environ Int ; 129: 118-135, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125731

RESUMO

Can mitigating only particle mass, as the existing air quality measures do, ultimately lead to reduction in ultrafine particles (UFP)? The aim of this study was to provide a broader urban perspective on the relationship between UFP, measured in terms of particle number concentration (PNC) and PM2.5 (mass concentration of particles with aerodynamic diameter < 2.5 µm) and factors that influence their concentrations. Hourly average PNC and PM2.5 were acquired from 10 cities located in North America, Europe, Asia, and Australia over a 12-month period. A pairwise comparison of the mean difference and the Kolmogorov-Smirnov test with the application of bootstrapping were performed for each city. Diurnal and seasonal trends were obtained using a generalized additive model (GAM). The particle number to mass concentration ratios and the Pearson's correlation coefficient were calculated to elucidate the nature of the relationship between these two metrics. Results show that the annual mean concentrations ranged from 8.0 × 103 to 19.5 × 103 particles·cm-3 and from 7.0 to 65.8 µg·m-3 for PNC and PM2.5, respectively, with the data distributions generally skewed to the right, and with a wider spread for PNC. PNC showed a more distinct diurnal trend compared with PM2.5, attributed to the high contributions of UFP from vehicular emissions to PNC. The variation in both PNC and PM2.5 due to seasonality is linked to the cities' geographical location and features. Clustering the cities based on annual median concentrations of both PNC and PM2.5 demonstrated that a high PNC level does not lead to a high PM2.5, and vice versa. The particle number-to-mass ratio (in units of 109 particles·µg-1) ranged from 0.14 to 2.2, >1 for roadside sites and <1 for urban background sites with lower values for more polluted cities. The Pearson's r ranged from 0.09 to 0.64 for the log-transformed data, indicating generally poor linear correlation between PNC and PM2.5. Therefore, PNC and PM2.5 measurements are not representative of each other; and regulating PM2.5 does little to reduce PNC. This highlights the need to establish regulatory approaches and control measures to address the impacts of elevated UFP concentrations, especially in urban areas, considering their potential health risks.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Cidades , Tamanho da Partícula , Emissões de Veículos/análise
16.
Sci Total Environ ; 658: 34-41, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30572213

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic chemicals that are widely distributed in the atmosphere and well known for their adverse health effects. This study aims to describe, for the first time, the levels, sources and associated health risks of particulate PAHs in an urban background atmosphere of Lisbon, the capital and largest city in Portugal. PM10 aerosol samples were collected from early January to the end of December 2012 with a high-volume sampler and were later analyzed for 10 PAHs by high-performance liquid chromatography. The annual average of the sum of the concentrations of PAHs (ΣPAHs) was 1.64 ±â€¯1.85 ng/m3. The dominant PAHs were pyrene, chrysene, benzo[b]fluoranthene, fluoranthene and benzo[g,h,i]perylene. Together these species accounted for approximately 70% of the ΣPAHs. A marked seasonal variation was observed for the investigated PAHs, with the highest values in winter and the lowest in spring and summer, reflecting the variation of emissions and meteorological conditions over time. The average concentration of benzo[a]pyrene was found to be 0.107 ±â€¯0.152 ng/m3, not exceeding the target value of 1 ng/m3 established by European air quality legislation. Diagnostic ratios and principal component analysis were employed for the source apportionment of PAHs. Both tools indicated that vehicle exhaust was the main contributor to the atmospheric levels of PAHs in the study area.

17.
Environ Pollut ; 239: 82-94, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29649762

RESUMO

Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 104 # cm-3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Ferrovias , Instalações de Transporte/normas , Aerossóis , Grécia , Tamanho da Partícula , Volatilização
18.
Environ Pollut ; 238: 186-195, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29554566

RESUMO

This study implements a two-box model coupled with ultrafine particle (UFP) multicomponent microphysics for a compartmentalised street canyon. Canyon compartmentalisation can be described parsimoniously by three parameters relating to the features of the canyon and the atmospheric state outside the canyon, i.e. the heterogeneity coefficient, the vortex-to-vortex exchange velocity, and the box height ratio. The quasi-steady solutions for the two compartments represent a balance among emissions, microphysical aerosol dynamics (i.e. evaporation/condensation of semi-volatiles, SVOCs), and exchange processes, none of which is negligible. This coupled two-box model can capture significant contrasts in UFP number concentrations and a measure of the volatility of the multi-SVOC-particles in the lower and upper canyon. Modelled ground-level UFP number concentrations vary across nucleation, Aitken, and accumulation particle modes as well-defined monotonic functions of canyon compartmentalisation parameters. Compared with the two-box model, a classic one-box model (without canyon compartmentalisation) leads to underestimation of UFP number concentrations by several tens of percent typically. By quantifying the effects of canyon compartmentalisation, this study provides a framework for understanding how canyon geometry and the presence of street trees, street furniture, and architectural features interact with the large-scale atmospheric flow to determine ground-level pollutant concentrations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Modelos Químicos , Material Particulado/análise , Aerossóis , Cidades , Árvores , Emissões de Veículos/análise
19.
Environ Pollut ; 230: 12-21, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28641196

RESUMO

We measured low molar-mass alkyl aminiums (methylaminium, dimethylaminium, ethylaminium and diethylaminium) in urban aerosols in the Yangtze River Delta region of eastern China in August 2014 and from November 2015 to May 2016. After examining artifact formation on sample filters, methylaminium, dimethylaminium and ethylaminium concentrations were quantified. The three C1-C2 aminiums exhibited a unimodal size distribution that maximized between 0.56 and 1.0 µm. Their concentrations in PM2.5 were 5.7 ± 3.2 ng m-3, 7.9 ± 5.4 ng m-3 and 20.3 ± 16.6 ng m-3, respectively, with higher concentrations during the daytime and in warm seasons. On new particle growth days, amine uptake to particles larger than 56 nm was barely enhanced. The molar ratios of individual aminium/NH4+ in PM2.5 were on the order of 10-4 and 10-3. Aminiums were thus far less to out-compete ammonium (NH4+) in neutralizing acidic species in particle sizes down to 56 nm. Abundant nitrate (NO3-/SO42- molar ratio = âˆ¼3) and its correlation to methylaminium and ethylaminium implied that nitrate might be more important aminium salt than sulfate in urban aerosols of this area. Direct measurement of particle-phase amine emission from coal and biomass burning showed that coal burning is an important atmospheric amine source, considering coal burning is top-ranked particulate matter source in China.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , China , Carvão Mineral , Nitratos/análise , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/análise , Rios , Estações do Ano , Sulfatos/análise , Emissões de Veículos/análise
20.
Sci Total Environ ; 562: 822-833, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27110993

RESUMO

PM2.5 aerosol samples were collected from January 2013 to January 2014 on the kerbside of a major arterial route in the city of Oporto, Portugal, and later analyzed for carbonaceous fractions and water soluble ions. The average concentrations of organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) in the aerosol were 6.2µg/m(3), 5.0µg/m(3) and 3.8µg/m(3), respectively, and fit within the range of values that have been observed close to major roads in Europe, Asia and North America. On average, carbonaceous matter accounted for 56% of the gravimetrically measured PM2.5 mass. The three carbon fractions exhibited a similar seasonal variation, with high concentrations in late autumn and in winter, and low concentrations in spring. SO4(2-) was the dominant water soluble ion, followed by NO3(-), NH4(+), Cl(-), Na(+), K(+), oxalate, Ca(2+), Mg(2+), formate, methanesulfonate and acetate. Some of these ions exhibited a clear seasonal trend during the study period. The average OC/EC ratio for the entire set of samples was 1.28±0.61, which was consistent with a significant influence of vehicle exhaust emissions on aerosol composition. On the other hand, the average WSOC/OC ratio was 0.67±0.23, reflecting the influence of other emitting sources. WSOC was highly correlated with nssK(+), a tracer of biomass combustion, and was not correlated with nssSO4(2-), a species associated with secondary processes, suggesting that the main source of WSOC was biomass burning. Most of the SO4(2-) was anthropogenic in origin and was closely associated with NH4(+), pointing to the formation of secondary aerosols. Na(+), Cl(-) and methanesulfonate were clearly associated with marine sources while NO3(-) was related with combustion of both fossil and non-fossil fuels. Mixed sources explained the occurrence of the other water soluble ions.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Portugal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA