RESUMO
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Assuntos
Drosophila , Morinda , Animais , Drosophila/genética , Drosophila melanogaster/genética , Modelos Genéticos , Morinda/genética , Especificidade da EspécieRESUMO
Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.
Assuntos
Biomassa , Ecossistema , Pergelissolo , Tibet , Áreas Alagadas , Plantas/metabolismo , Mudança Climática , Temperatura , Ciclo do Carbono , Desenvolvimento Vegetal/fisiologia , Solo/química , PradariaRESUMO
Since the emergence of the first fungi some 700 million years ago, unicellular yeast-like forms have emerged multiple times in independent lineages via convergent evolution. While tens to hundreds of millions of years separate the independent evolution of these unicellular organisms, they share remarkable phenotypic and metabolic similarities, and all have streamlined genomes. Yeasts occur in every aquatic environment yet examined. Many species are aquatic; perhaps most are amphibious. How these species have evolved to thrive in aquatic habitats is fundamental to understanding functions and evolutionary mechanisms in this unique group of fungi. Here we review the state of knowledge of the physiological and ecological diversity of amphibious yeasts and their key evolutionary adaptations enabling survival in aquatic habitats. We emphasize some genera previously thought to be exclusively terrestrial. Finally, we discuss the ability of many yeasts to survive in extreme habitats and how this might lend insight into ecological plasticity, including amphibious lifestyles.
Assuntos
Evolução Biológica , Ecossistema , Adaptação Fisiológica , Fungos/genéticaRESUMO
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations.
Assuntos
Ecossistema , Fontes Hidrotermais , Animais , Bactérias/genética , Bactérias/metabolismo , Filogenia , Simbiose/fisiologiaRESUMO
The lateral habenula (LHb) has emerged as a pivotal brain region implicated in depression, displaying hyperactivity in human and animal models of depression. While the role of LHb efferents in depressive disorders has been acknowledged, the specific synaptic alterations remain elusive. Here, employing optogenetics, retrograde tracing, and ex vivo whole-cell patch-clamp techniques, we investigated synaptic transmission in male mice subjected to chronic social defeat stress (CSDS) at three major LHb neuronal outputs: the dorsal raphe nucleus (DRN), the ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). Our findings uncovered distinct synaptic adaptations in LHb efferent circuits in response to CSDS. Specifically, CSDS induced in susceptible mice postsynaptic potentiation and postsynaptic depression at the DRN and VTA neurons, respectively, receiving excitatory inputs from the LHb, while CSDS altered presynaptic transmission at the LHb terminals in RMTg in both susceptible and resilient mice. Moreover, whole-cell recordings at projection-defined LHb neurons indicate decreased spontaneous activity in VTA-projecting LHb neurons, accompanied by an imbalance in excitatory-inhibitory inputs at the RMTg-projecting LHb neurons. Collectively, these novel findings underscore the circuit-specific alterations in LHb efferents following chronic social stress, shedding light on potential synaptic adaptations underlying stress-induced depressive-like states.
Assuntos
Habenula , Camundongos Endogâmicos C57BL , Neurônios , Derrota Social , Estresse Psicológico , Animais , Habenula/fisiologia , Masculino , Estresse Psicológico/fisiopatologia , Camundongos , Neurônios/fisiologia , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Área Tegmentar Ventral/fisiologia , Optogenética , Adaptação Fisiológica/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.
Assuntos
Antocianinas , Papaveraceae , Antocianinas/metabolismo , Papaveraceae/metabolismo , Fenótipo , Íons/metabolismo , Flores , Pigmentação/genética , Cor , Regulação da Expressão Gênica de PlantasRESUMO
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-ß-hydroxybutyrate (ßHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Assuntos
Corpos Cetônicos , Cetonas , Humanos , Corpos Cetônicos/metabolismo , Exercício Físico/fisiologia , Ácido 3-Hidroxibutírico , Suplementos NutricionaisRESUMO
Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.
Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/fisiologia , Arabidopsis/fisiologia , Flores , Estresse Salino , Estresse Fisiológico , ÁguaRESUMO
The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyze the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as animal and plant pathogens, with the latter causing devastating diseases with significant economic and/or ecological impacts. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defense compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolisms. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation. Numerous oomycete species are devastating plant pathogens that cause major damage in crops and natural ecosystems. Their interactions with hosts are shaped by strong selection, but how selection affects adaptation of the primary metabolism to a pathogenic lifestyle is not yet well established. By pan-genome and metabolic network analyses of distantly related oomycete pathogens and their nonpathogenic relatives, we reveal considerable lifestyle- and lineage-specific adaptations. This study contributes to a better understanding of metabolic adaptations in pathogenic oomycetes in relation to lifestyle, host, and environment, and the findings will help in pinpointing potential targets for disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Oomicetos , Redes e Vias Metabólicas/genética , Adaptação Fisiológica , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Filogenia , Simbiose , Plantas/microbiologia , Plantas/metabolismo , GenômicaRESUMO
A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; â¼early reproductive maturity in humans) and aged (9 mo; â¼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.
Assuntos
Ecocardiografia , Coração , Gravidez , Feminino , Humanos , Ratos , Animais , Idade Materna , Ratos Sprague-Dawley , Coração/diagnóstico por imagem , Débito CardíacoRESUMO
Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse-louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence.
Assuntos
Parasitos , Animais , Filogenia , Aves/parasitologia , Ecologia , Interações Hospedeiro-ParasitaRESUMO
The ocean's midwater is a uniquely challenging yet predictable and simple visual environment. The need to see without being seen in this dim, open habitat has led to extraordinary visual adaptations. To understand these adaptations, we compared the morphological and functional differences between the eyes of three hyperiid amphipods-Hyperia galba, Streetsia challengeri and Phronima sedentaria. Combining micro-CT data with computational modelling, we mapped visual field topography and predicted detection distances for visual targets viewed in different directions through mesopelagic depths. Hyperia's eyes provide a wide visual field optimized for spatial vision over short distances, while Phronima's and Streetsia's eyes have the potential to achieve greater sensitivity and longer detection distances using spatial summation. These improvements come at the cost of smaller visual fields, but this loss is compensated for by a second pair of eyes in Phronima and by behaviour in Streetsia. The need to improve sensitivity while minimizing visible eye size to maintain crypsis has likely driven the evolution of hyperiid eye diversity. Our results provide an integrative look at how these elusive animals have adapted to the unique visual challenges of the mesopelagic.
Assuntos
Anfípodes , Animais , Anfípodes/fisiologia , Anfípodes/anatomia & histologia , Ecossistema , Campos Visuais , Olho/anatomia & histologia , Visão Ocular , Microtomografia por Raio-XRESUMO
Cellular phenotype and function are altered in different microenvironments. For targeted therapies it is important to understand site-specific cellular adaptations. Juvenile Idiopathic Arthritis (JIA) is characterised by autoimmune joint inflammation, with frequent inadequate treatment responses. To comprehensively assess the inflammatory immune landscape, we designed a 37-parameter spectral flow cytometry panel delineating mononuclear cells from JIA synovial fluid (SF) of autoimmune inflamed joints, compared to JIA and healthy control blood. Synovial monocytes and NK cells (CD56bright) lack Fc-receptor CD16, suggesting antibody-mediated targeting may be ineffective. B cells and DCs, both in small frequencies in SF, undergo maturation with high 4-1BB, CD71, CD39 expression, supporting T cell activation. SF effector and regulatory T cells were highly active with newly described co-receptor combinations that may alter function, and suggestion of metabolic reprogramming via CD71, TNFR2 and PD-1. Most SF effector phenotypes, as well as an identified CD4-Foxp3+ T cell population, were restricted to the inflamed joint, yet specific SF-predominant CD4+Foxp3+ Treg subpopulations were increased in blood of active but not inactive JIA, suggesting possible recirculation and loss of immunoregulation at distal sites. This first comprehensive dataset of the site-specific inflammatory landscape at protein level will inform functional studies and the development of targeted therapeutics to restore immunoregulatory balance and achieve remission in JIA.
RESUMO
Whether the forelimb-digging apparatus of tooth-digging subterranean mammals has similar levels of specialization as compared to scratch-diggers is still unknown. We assessed the scapular morphology and forelimb musculature of all four solitary African mole rats (Bathyergidae): two scratch-diggers, Bathyergus suillus and Bathyergus janetta, and two chisel-tooth diggers, Heliophobius argenteocinereus and Georychus capensis. Remarkable differences were detected: Bathyergus have more robust neck, shoulder, and forearm muscles as compared to the other genera. Some muscles in Bathyergus were also fused and often showing wider attachment areas to bones, which correlate well with its more robust and larger scapula, and its wider and medially oriented olecranon. This suggests that shoulder, elbow, and wrist work in synergy in Bathyergus for generating greater out-forces and that the scapula and proximal ulna play fundamental roles as pivots to maximize and accommodate specialized muscles for better (i) glenohumeral and scapular stabilization, (ii) powerful shoulder flexion, (iii) extension of the elbow and (iv) flexion of the manus and digits. Moreover, although all bathyergids showed a similar set of muscles, Heliophobius lacked the m. tensor fasciae antebrachii (aiding with elbow extension and humeral retraction), and Heliophobius and Georychus lacked the m. articularis humeri (aiding with humeral adduction), indicating deeper morphogenetic differences among digging groups and suggesting a relatively less specialized scratch-digging ability. Nevertheless, Heliophobius and Bathyergus shared some similar adaptations allowing scratch-digging. Our results provide new information about the morphological divergence within this family associated with the specialization to distinct functions and digging behaviors, thus contributing to understand the mosaic of adaptations emerging in phylogenetically and ecologically closer subterranean taxa. This and previous anatomical studies on the Bathyergidae will provide researchers with a substantial basis on the form and function of the musculoskeletal system for future kinematic investigations of digging behavior, as well as to define potential indicators of scratch-digging ability.
Assuntos
Membro Anterior , Animais , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Ratos-Toupeira/anatomia & histologia , Ratos-Toupeira/fisiologia , Sistema Musculoesquelético/anatomia & histologia , Escápula/anatomia & histologia , Escápula/fisiologiaRESUMO
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Assuntos
Óxido Nítrico , Oxirredução , Óxido Nítrico/metabolismo , Plantas/metabolismo , Metabolismo Energético , Oxigênio/metabolismo , Transdução de SinaisRESUMO
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Plantas , Estresse Fisiológico , Micorrizas/fisiologia , Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Salinidade , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Rizosfera , Estresse SalinoRESUMO
The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.
La abeja occidental Apis mellifera es una especie manejada que proporciona diversos productos de la colmena y servicios de polinización, los cuales son cruciales para plantas silvestres y cultivos en todo el mundo. En distintos continentes se han registrado altas tasas de mortalidad, las cuales son atribuidas a diversos factores, como el uso de pesticidas, plagas, enfermedades y falta de recursos florales. Además, el cambio climático ha sido identificado como un potencial factor que afecta negativamente a los polinizadores, pero aún no está claro cómo podría afectar a las poblaciones de abejas melíferas. En este contexto, realizamos una revisión sistemática de la literatura disponible para sintetizar los efectos del cambio climático en las abejas melíferas y las actividades apícolas. En total, se identificaron 90 artículos que proporcionaron información sobre los posibles efectos (negativos, neutros y positivos) en las abejas melíferas y la apicultura. El interés por el impacto del cambio climático en las abejas melíferas ha aumentado en la última década, con estudios centrados principalmente en individuos de abejas melíferas, utilizando enfoques empíricos y experimentales y realizados a escalas espaciales (<10 km) y temporales (<5 años) cortas. Además, los análisis ambientales fueron basaron principalmente en datos a corto plazo (meteorológicos) y se concentraron sólo en algunos países. Variables ambientales como la temperatura, las precipitaciones y el viento fueron ampliamente estudiadas y tuvieron efectos negativos generalizados sobre distintos aspectos biológicos y ecológicos de las abejas melíferas. Además, las reservas alimenticias, las interacciones planta-polinizador, la mortalidad, la expresión génica y el metabolismo se vieron afectados negativamente. Entre los vacios de conocimiento cabe mencionar la falta de estudios a nivel de colmenar y apicultor, la escasez de estudios de predicción y percepción, la escasa representación de las grandes escalas espaciales y a mediano plazo, el déficit de análisis climáticos y la escasa comprensión de los impactos potenciales de plagas y enfermedades. Por último, las repercusiones del cambio climático en la apicultura mundial siguen siendo un tema emergente, que debe estudiarse en los distintos países. Esto se debe principalmente a sus diversos efectos sobre las abejas melíferas y a la necesidad potencial de aplicar medidas de adaptación para mantener esta actividad crucial en escenarios medioambientales complejos.
Assuntos
Criação de Abelhas , Praguicidas , Animais , Abelhas , Mudança Climática , Alimentos , PolinizaçãoRESUMO
Autistic children and young people (CYP) experience mental health difficulties but face many barriers to accessing and benefiting from mental health care. There is a need to explore strategies in mental health care for autistic CYP to guide clinical practice and future research and support their mental health needs. Our aim was to identify strategies used to improve mental health care for autistic CYP and examine evidence on their acceptability, feasibility, and effectiveness. A systematic review and meta-analysis were carried out. All study designs reporting acceptability/feasibility outcomes and empirical quantitative studies reporting effectiveness outcomes for strategies tested within mental health care were eligible. We conducted a narrative synthesis and separate meta-analyses by informant (self, parent, and clinician). Fifty-seven papers were included, with most investigating cognitive behavioral therapy (CBT)-based interventions for anxiety and several exploring service-level strategies, such as autism screening tools, clinician training, and adaptations regarding organization of services. Most papers described caregiver involvement in therapy and reported adaptations to communication and intervention content; a few reported environmental adjustments. In the meta-analyses, parent- and clinician-reported outcomes, but not self-reported outcomes, showed with moderate certainty that CBT for anxiety was an effective treatment compared to any comparison condition in reducing anxiety symptoms in autistic individuals. The certainty of evidence for effectiveness, synthesized narratively, ranged from low to moderate. Evidence for feasibility and acceptability tended to be positive. Many identified strategies are simple, reasonable adjustments that can be implemented in services to enhance mental health care for autistic individuals. Notable research gaps persist, however.
Assuntos
Transtorno Autístico , Serviços de Saúde Mental , Adolescente , Criança , Humanos , Transtorno Autístico/terapia , Transtorno Autístico/psicologia , Terapia Cognitivo-Comportamental/métodos , Serviços de Saúde Mental/organização & administraçãoRESUMO
Forward-facing eyes with parallel optic axes, which provide a wide field of binocular vision and precise depth perception, are among the diagnostic features of crown primates; however, the adaptive significance of this feature remains contentious. Two of the most prominent primate-origins hypotheses propose that either foraging for fruit or nocturnal predation on insects created selective pressures that led to the evolution of diagnostic primate traits, including a wide binocular field. To determine whether either of these hypotheses provides a viable explanation for the evolution of primates' derived eye orientation, the importance of binocular depth cues for the two tasks invoked by these hypotheses was evaluated experimentally in Microcebus murinus and Cheirogaleus medius, cheirogaleids' considered reasonable living analogs of the earliest euprimates. Performance in grasping insects and fruit was evaluated when the animals made use of their full binocular visual field and when their binocular visual field was restricted using a helmet-mounted blinder. Restriction of the binocular field had no effect on fruit grasping performance; however, restriction of the binocular field resulted in a significant deficit in insect predation performance. Differences in behavioral variables also suggest that insect predation is a more visually demanding task than fruit foraging. These results support the role of insect predation, but not fruit foraging, in contributing to the selective pressures that led to the evolution of parallel optic axes and a wide binocular field in crown primates.
Assuntos
Sinais (Psicologia) , Frutas , Animais , Primatas , Visão Binocular , InsetosRESUMO
Whilst the exercise-induced myokine interleukin-6 (IL-6) plays a beneficial role in cardiac structural adaptations, its influence on exercise-induced functional cardiac outcomes remains unknown. We hypothesised that IL-6 activity is required for exercise-induced improvements in left ventricular global longitudinal strain (LV GLS). In an exploratory study 52 individuals with abdominal obesity were randomised to 12 weeks' high-intensity exercise or no exercise in combination with IL-6 receptor inhibition (IL-6i) or placebo. LV strain and volume measurements were assessed by cardiac magnetic resonance. Exercise improved LV GLS by -5.4% [95% CI: -9.1% to -1.6%] (P = 0.007). Comparing the change from baseline in LV GLS in the exercise + placebo group (-4.8% [95% CI: -7.4% to -2.2%]; P < 0.0004) to the exercise + IL-6i group (-1.1% [95% CI: -3.8% to 1.6%]; P = 0.42), the exercise + placebo group changed -3.7% [95% CI: -7.4% to -0.02%] (P = 0.049) more than the exercise + IL6i group. However, the interaction effect between exercise and IL-6i was insignificant (4.5% [95% CI: -0.8% to 9.9%]; P = 0.09). Similarly, the exercise + placebo group improved LV global circumferential strain by -3.1% [95% CI: -6.0% to -0.1%] (P = 0.04) more compared to the exercise + IL-6i group, yet we found an insignificant interaction between exercise and IL-6i (4.2% [95% CI: -1.8% to 10.3%]; P = 0.16). There was no effect of IL-6i on exercise-induced changes to volume rates. This study underscores the importance of IL-6 in improving LV GLS in individuals with abdominal obesity suggesting a role for IL-6 in cardiac functional exercise adaptations.