Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.211
Filtrar
1.
Plant J ; 118(3): 717-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213282

RESUMO

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Assuntos
Antocianinas , Apiaceae , Genoma de Planta , Genômica , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomos de Plantas/genética
2.
Plant J ; 119(1): 153-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593295

RESUMO

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulação da Expressão Gênica de Plantas , Luz , Nitrogênio , Spliceossomos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Antocianinas/metabolismo
3.
Plant J ; 113(6): 1295-1309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651024

RESUMO

Anthocyanins are important secondary metabolites in plants. They are important for human health because of their antioxidant activities and because their dietary intake reduces the incidence of cardiovascular and cerebrovascular diseases and tumors. The biosynthesis of anthocyanins and its regulation in fruits and vegetables is a global research hotspot. Compared with cultivated apples, the red-fleshed apple is a relatively new and popular commodity in the market. Previous studies on red-fleshed apples have focused on the basis for the high anthocyanin content and the transcriptional regulation of anthocyanin synthesis. In the present study, we focused on the mechanism of microRNA-mediated post-transcriptional regulation of anthocyanin synthesis in red-fleshed apples. We identified a microRNA (miRNA), designated mdm-miR858, that is specifically expressed in the flesh of apple fruit. The expression level of miR858 was significantly lower in red-fleshed apples than in white-fleshed apples. The overexpression of mdm-miR858 significantly inhibited anthocyanin accumulation, whereas the silencing of mdm-miR858 promoted anthocyanin synthesis in STTM858 transgenic apple calli. Further analyses showed that mdm-miR858 targets the transcription factor genes MdMYB9 and MdMYBPA1 to participate anthocyanin accumulation in apple. Our results also show that MdHY5, a transcription factor in the light signaling pathway, can bind to the promoter of mdm-miR858 to inhibit its transcription, thereby regulating anthocyanin synthesis. Based on our results, we describe a novel HY5-miR858-MYB loop involved in the modulation of anthocyanin biosynthesis. These findings provide new information about how plant miRNAs regulate anthocyanin anabolism and provide a basis for breeding new anthocyanin-rich, red-fleshed apple varieties.


Assuntos
Malus , Humanos , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500027

RESUMO

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
5.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691187

RESUMO

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Punica granatum , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Punica granatum/genética , Punica granatum/metabolismo , Pigmentação/genética , Perfilação da Expressão Gênica , Cor , Metabolômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G426-G437, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290991

RESUMO

This study aims to investigate the role and molecular mechanism of anthocyanin in improving liver fibrosis through ferroptosis, providing a basis for drug development and targeted therapy. In this study, a mouse model of liver fibrosis was established using CCl4, and the anthocyanin treatment groups were administered 100 mg/kg anthocyanin daily via gavage. Furthermore, real-time fluorescent quantitative PCR (qRT-PCR), Western blotting (WB), and enzyme-linked immunosorbent assay were used to assess liver fibrosis indicators and liver injury markers. Histopathological methods were used to confirm the morphology of liver injury in different treatment groups. The effects of anthocyanins on ferroptosis markers, NCOA4 and FTH1 expression, were examined through qRT-PCR, WB, and Co-IP. Confocal microscopy was used to validate the colocalization of ferritin and lysosomes. A differential expression model of TRIM7 was constructed to verify its impact on the progression of liver fibrosis. The present study demonstrates the hepatoprotective effects of anthocyanins in liver fibrosis, highlighting their ability to enhance hepatic stellate cell (HSC) ferroptosis and regulate ferritin autophagy. Moreover, TRIM7 is identified as a key mediator of anthocyanin-induced regulation of hepatic stellate cells activation for liver fibrosis treatment through modulation of ferroautophagy. Mechanistic investigations further reveal that TRIM7 exerts its influence on the process of ferroautophagy by controlling NCOA4 ubiquitination. Our study discovered that anthocyanins could improve liver fibrosis by regulating NCOA4 ubiquitination through TRIM7, thereby affecting hepatic stellate cells' ferroptosis levels.NEW & NOTEWORTHY This was the first study to demonstrate that anthocyanins can improve the progression of liver fibrosis by promoting hepatic stellate cell (HSC) ferroptosis. Anthocyanins could affect the content of Fe2+ by promoting ferroautophagy in HSCs, thereby promoting the level of ferroptosis. This study demonstrates for the first time that anthocyanins can inhibit the expression of TRIM7 and then affect the ubiquitination of NCOA4 to regulate the level of ferritin autophagy and ferroptosis.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Ferroptose , Cirrose Hepática , Animais , Camundongos , Antocianinas/farmacologia , Antocianinas/metabolismo , Antocianinas/uso terapêutico , Mirtilos Azuis (Planta)/química , Ferritinas , Ferroptose/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ubiquitinação/efeitos dos fármacos , Coativadores de Receptor Nuclear/efeitos dos fármacos , Coativadores de Receptor Nuclear/metabolismo , Proteínas com Motivo Tripartido/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
7.
Biochem Biophys Res Commun ; 733: 150687, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39278091

RESUMO

This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.


Assuntos
Antocianinas , Diferenciação Celular , Desenvolvimento Muscular , Photinia , Células Satélites de Músculo Esquelético , Fator de Necrose Tumoral alfa , Animais , Antocianinas/farmacologia , Antocianinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Diferenciação Celular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/citologia , Photinia/química , Camundongos , Células Cultivadas , Frutas/química , Frutas/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia
8.
BMC Plant Biol ; 24(1): 335, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664614

RESUMO

BACKGROUND: The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS: In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION: This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.


Assuntos
Antocianinas , Brassica , Perfilação da Expressão Gênica , Metaboloma , Proteínas de Plantas , Antocianinas/metabolismo , Antocianinas/biossíntese , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
9.
BMC Plant Biol ; 24(1): 910, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349997

RESUMO

BACKGROUND: Oil palm (Elaeis guineensis Jacq.) is a very important tropical woody oil plant with high commercial and ornamental value. The exocarp of the oil palm fruit is rich in anthocyanosides and proanthocyanidins, which not only give it a bright colour, but also mark the maturity of the fruit. The study of the dynamic change pattern of anthocyanoside content and important anthocyanoside metabolism-related regulatory genes during oil palm ripening is conducive to the improvement of the ornamental value of oil palm and the determination of the optimal harvesting period of the fruits. METHODS: We analyzed the virescens oil palm (AS) and nigrescens oil palm (AT) at 95 days (AS1, AT1), 125 days (AS2, AT2) and 185 days (AS3, AT3) after pollination were used as experimental materials for determining the changes in the total amount of anthocyanins as well as their metabolomics and transcriptomics studies by using the LC-MS/MS technique and RNA-Seq technique. RESULT: The results showed that the total anthocyanin content decreased significantly from AS1 (119 µg/g) to AS3 (23 µg/g), and from AT1 (1302 µg/g) to AT3 (170 µg/g), indicating a clear decreasing trend during fruit development. Among them, the higher flavonoids in AS and AT included anthocyanins such as peonidin-3-O-rutinoside (H35), pelargonidin-3-O-rutinoside (H21), and cyanidin-3-O-glucoside (H7), as well as condensed tannins such as procyanidin B2 (H47), procyanidin C1 (H49), and procyanidin B3 (H48). Notably, nine genes involved in the anthocyanin biosynthetic pathway exhibited up-regulated expression during the pre-development stage of oil palm fruits, particularly during the AS1 and AT1 periods. These genes include: Chalcone synthase (CHS; LOC105036364); Flavanone 3-hydroxylase (F3H; LOC105054663); Dihydroflavonol 4-reductase (DFR; LOC105040724, LOC105048473); Anthocyanidin synthase (ANS; LOC105035842), UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105039612); Flavonoid 3',5'-hydroxylase (F3'5'H; LOC105036086, LOC105044124, LOC105045493). In contrast, five genes demonstrated up-regulated expression as the fruits developed, specifically during the AS3 and AT3 periods. These genes include: Chalcone synthase (CHS; LOC105036921, LOC105035716); Chalcone isomerase (CHI; LOC105045978); UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105046326); Flavonoid 3'-hydroxylase (F3'H; LOC105036086). CONCLUSION: Most of differentially expressed genes exhibited up-regulation during the early stages of fruit development, which may contribute to the elevated anthocyanin content observed in oil palm fruits of both types during the pre-developmental period. Furthermore, the expression levels of most genes were found to be higher in the AT fruit type compared to the AS fruit type, suggesting that the differential expression of these genes may be a key factor underlying the differences in anthocyanoside production in the exocarp of oil palm fruits from these two fruit types. The findings of this study provide a theoretical foundation for the identification and characterization of genes involved in anthocyanin synthesis in oil palm fruits, as well as the development of novel variations using molecular biology approaches.


Assuntos
Antocianinas , Arecaceae , Frutas , Perfilação da Expressão Gênica , Metabolômica , Antocianinas/metabolismo , Antocianinas/biossíntese , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Arecaceae/genética , Arecaceae/metabolismo , Arecaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
10.
BMC Plant Biol ; 24(1): 627, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961369

RESUMO

BACKGROUND: Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS: A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS: These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.


Assuntos
Antocianinas , Pigmentação , Antocianinas/metabolismo , Antocianinas/genética , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Magnoliopsida/genética , Fenótipo , Filogenia
11.
Planta ; 260(3): 69, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127837

RESUMO

MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.


Assuntos
Antocianinas , Frutas , Luz , Vitis , Vitis/efeitos da radiação , Vitis/metabolismo , Vitis/genética , Antocianinas/metabolismo , Frutas/efeitos da radiação , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pigmentação/efeitos da radiação
12.
Plant Biotechnol J ; 22(2): 386-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797061

RESUMO

Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.


Assuntos
Arabidopsis , Mirtilos Azuis (Planta) , MicroRNAs , Frutas/genética , Frutas/metabolismo , Antocianinas , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Plant Biotechnol J ; 22(5): 1238-1250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124296

RESUMO

Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3-O-rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside and delphinidin 3-O-glucoside could be obtained in high amounts in a few days. Additionally, co-infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.


Assuntos
Antocianinas , Nicotiana , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas/genética
14.
Metab Eng ; 81: 182-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103887

RESUMO

Anthocyanins are widely distributed pigments in flowering plants with red, purple or blue colours. Their properties in promoting heath make anthocyanins perfect natural colourants for food additives. However, anthocyanins with strong colour and stability at neutral pH, suitable as food colourants are relatively rare in nature. Acylation increases anthocyanin stability and confers bluer colour. In this study, we isolated two anthocyanin regulators SbMyb75 and SbDel from S. baicalensis, and showed that constitutive expression of the two TFs led to accumulation of anthocyanins at high levels in black carrot hairy roots. However, these hairy roots had severe growth problems. We then developed a ß-estradiol inducible system using XVE and a Lex-35S promoter, to initiate expression of the anthocyanin regulators and induced this system in hairy roots of black carrot, tobacco and morning glory. Anthocyanins with various decorations were produced in these hairy roots without any accompanying side-effects on growth. We further produced highly acylated anthocyanins with blue colour in a 5 L liquid culture in a bioreactor of hairy roots from morning glory. We provide here a strategy to produce highly decorated anthocyanins without the need for additional engineering of any of the genes encoding decorating enzymes. This strategy could be transferred to other species, with considerable potential for natural colourant production for the food industries.


Assuntos
Antocianinas , Nicotiana , Antocianinas/genética , Nicotiana/genética , Reatores Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
15.
Crit Rev Food Sci Nutr ; : 1-14, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352445

RESUMO

With the gradual prohibition of antibiotic fungicides, it is of great significance to develop high-efficient, nontoxic and environmental-friendly antimicrobial agents. Anthocyanin is a natural plant polyphenol pigment which shows antibacterial, anti-inflammatory and antioxidant effects through inhibiting the synthesis of bacterial cell wall, interfering bacterial respiratory metabolism, and inducing bacterial autolysis. As a typical antibacterial agent, anthocyanins have been widely used in various fields, including biological pesticides or feed additives in agricultural production, anti-inflammatory and antibacterial wound dressings in medicine, etc. However, the structure of anthocyanins is unstable, which limits its practical application. In this article, the biological activity, antibacterial mechanism and stabilization strategy of anthocyanins as antibacterial agents were reviewed. The safety, application scope and methods of anthocyanins were discussed. In addition, the challenges and development prospects of anthocyanin extract antibacterial technology were also prospected. This will be the direction for researchers to further explore and better apply anthocyanins to practical production and application.

16.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935054

RESUMO

Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.

17.
Microb Cell Fact ; 23(1): 228, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143478

RESUMO

BACKGROUND: Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. RESULTS: In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. CONCLUSIONS: We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Saccharomyces cerevisiae , Antocianinas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Engenharia Metabólica/métodos , Vias Biossintéticas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
J Fluoresc ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739317

RESUMO

In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 103 S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke's shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.

19.
Eur J Nutr ; 63(5): 1545-1553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38656355

RESUMO

PURPOSE: Evidence on the potential beneficial effects of anthocyanin-rich foods and supplements on cognitive performance is mainly based on acute or long-term studies in older adults. However, short-term studies focusing on a younger population are lacking. Therefore, short-term effects of Aronia melanocarpa extract (AME) supplementation on cognitive performance were investigated in healthy young adults. Potential underlying mechanisms were also addressed. METHODS: A randomized, double-blind, placebo-controlled cross-over study was performed involving 35 apparently healthy young adults. Participants consumed AME (180 mg anthocyanins/day) or a placebo for 1 week, separated by at least 2 weeks of wash-out. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Furthermore, arterial stiffness (carotid-to-femoral pulse wave velocity), retinal microvascular calibers (fundus photography), and serum brain-derived neurotrophic factor (BDNF) concentrations were measured at baseline and after 1 week. RESULTS: Participants had a mean age of 25 ± 4 years and an average BMI of 23.4 ± 2.7 kg/m2. Compliance was excellent and the study product was well-tolerated. As compared to placebo, movement time was significantly reduced by 4.8% within the five-choice reaction time test after 1 week of AME supplementation (intervention effect: - 12 ms; p < 0.05). Memory and executive function did however not change. Serum BDNF concentrations were significantly higher after AME supplementation as compared to placebo (+ 5.7%; intervention effect: 1.8 ng/mL; p < 0.05). However, arterial stiffness and retinal microvascular calibers were not affected. CONCLUSION: Short-term AME supplementation beneficially affected cognitive performance as attention and psychomotor speed improved. Serum BDNF concentrations were increased, but vascular function markers were not affected. CLINICAL TRIAL REGISTRATION: The study was registered on Clinical Trials under NCT03793777 on January 4th, 2019.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cognição , Estudos Cross-Over , Suplementos Nutricionais , Photinia , Extratos Vegetais , Humanos , Photinia/química , Método Duplo-Cego , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Cognição/efeitos dos fármacos , Masculino , Feminino , Adulto , Adulto Jovem , Fator Neurotrófico Derivado do Encéfalo/sangue , Antocianinas/farmacologia , Antocianinas/administração & dosagem , Testes Neuropsicológicos , Rigidez Vascular/efeitos dos fármacos
20.
Eur J Nutr ; 63(4): 1071-1088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300292

RESUMO

PURPOSE: The aim of the present study was to examine the acute and chronic effects of wild blueberry supplementation on mood, executive function, and serum biomarkers of neuroplasticity, inflammation, and oxidative stress in emerging adults with moderate-to-severe depressive symptoms. METHODS: In this double-blind trial, 60 emerging adults (Mage = 20.0 years, 32% male) with self-reported depressive symptoms were randomly assigned to receive a single blueberry drink (acute phase), followed by 6 weeks of daily blueberry supplementation (chronic phase), or a matched placebo drink. The primary outcome was Beck Depression Inventory-II (BDI-II) scores at 6-week follow-up. Further measures included momentary affect (PANAS-X) and accuracy on an executive function task. The data were analyzed using ANCOVAs adjusted for baseline values, sex, and habitual fruit and vegetable intake. Estimated marginal means were calculated to compare the treatment arms. RESULTS: The blueberry drink significantly improved positive affect (p = 0.026) and executive function (p = 0.025) at 2 h post-ingestion, with change scores being positively correlated in the blueberry group (r = 0.424, p = 0.017). However, after six weeks of supplementation the reduction in BDI-II scores was greater in the placebo group by 5.8 points (95% CI: 0.8-10.7, p = 0.023). Generalized anxiety and anhedonia also decreased significantly more in the placebo group. No significant differences were found for any of the biomarkers. CONCLUSIONS: Six weeks of wild blueberry supplementation were inferior to placebo in reducing depressive symptoms. Nevertheless, the correlated improvements in positive affect and executive function after a single dose of blueberries point to a beneficial, albeit transient, psychological effect. These contrasting results suggest a biphasic, hormetic-like response that warrants further investigation. TRIAL REGISTRATION: NCT04647019, dated 30 November, 2020.


Assuntos
Mirtilos Azuis (Planta) , Depressão , Suplementos Nutricionais , Humanos , Método Duplo-Cego , Masculino , Feminino , Adulto Jovem , Afeto/efeitos dos fármacos , Afeto/fisiologia , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Biomarcadores/sangue , Adulto , Estresse Oxidativo/efeitos dos fármacos , Adolescente , Frutas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA