Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.901
Filtrar
1.
Annu Rev Biochem ; 91: 1-32, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35320683

RESUMO

Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Microscopia Crioeletrônica/métodos , Humanos , SARS-CoV-2 , Imagem Individual de Molécula
2.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37506331

RESUMO

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Assuntos
Ensaios de Triagem em Larga Escala , Toxicologia , Animais , Humanos , Ensaios de Triagem em Larga Escala/métodos , Toxicologia/métodos
3.
Proc Natl Acad Sci U S A ; 121(27): e2311888121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913887

RESUMO

The prediction of protein 3D structure from amino acid sequence is a computational grand challenge in biophysics and plays a key role in robust protein structure prediction algorithms, from drug discovery to genome interpretation. The advent of AI models, such as AlphaFold, is revolutionizing applications that depend on robust protein structure prediction algorithms. To maximize the impact, and ease the usability, of these AI tools we introduce APACE, AlphaFold2 and advanced computing as a service, a computational framework that effectively handles this AI model and its TB-size database to conduct accelerated protein structure prediction analyses in modern supercomputing environments. We deployed APACE in the Delta and Polaris supercomputers and quantified its performance for accurate protein structure predictions using four exemplar proteins: 6AWO, 6OAN, 7MEZ, and 6D6U. Using up to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations, reducing time-to-solution from weeks to minutes. This computational approach may be readily linked with robotics laboratories to automate and accelerate scientific discovery.


Assuntos
Algoritmos , Biofísica , Proteínas , Proteínas/química , Biofísica/métodos , Conformação Proteica , Software , Biologia Computacional/métodos , Modelos Moleculares
4.
Trends Biochem Sci ; 47(2): 106-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823974

RESUMO

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate. National and regional centers have emerged to support this growth by increasing the accessibility of cryoEM throughout the biomedical research community. Through cooperation and synergy, these centers form a network of resources that accelerate the adoption of best practices for access and training and establish sustainable workflows to build future research capacity.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Estrutura Molecular
5.
Mol Cell Proteomics ; 23(5): 100754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548019

RESUMO

Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 µg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Espectrometria de Massas em Tandem , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Proteômica/métodos , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Células HeLa , Proteoma/análise , Fosforilação , Automação
6.
Mol Cell Proteomics ; 23(7): 100790, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777088

RESUMO

Protein identification and quantification is an important tool for biomarker discovery. With the increased sensitivity and speed of modern mass spectrometers, sample preparation remains a bottleneck for studying large cohorts. To address this issue, we prepared and evaluated a simple and efficient workflow on the Opentrons OT-2 robot that combines sample digestion, cleanup, and loading on Evotips in a fully automated manner, allowing the processing of up to 192 samples in 6 h. Analysis of 192 automated HeLa cell sample preparations consistently identified ∼8000 protein groups and ∼130,000 peptide precursors with an 11.5 min active liquid chromatography gradient with the Evosep One and narrow-window data-independent acquisition (nDIA) with the Orbitrap Astral mass spectrometer providing a throughput of 100 samples per day. Our results demonstrate a highly sensitive workflow yielding both reproducibility and stability at low sample inputs. The workflow is optimized for minimal sample starting amount to reduce the costs for reagents needed for sample preparation, which is critical when analyzing large biological cohorts. Building on the digesting workflow, we incorporated an automated phosphopeptide enrichment step using magnetic titanium-immobilized metal ion affinity chromatography beads. This allows for a fully automated proteome and phosphoproteome sample preparation in a single step with high sensitivity. Using the integrated digestion and Evotip loading workflow, we evaluated the effects of cancer immune therapy on the plasma proteome in metastatic melanoma patients.


Assuntos
Proteômica , Fluxo de Trabalho , Humanos , Proteômica/métodos , Células HeLa , Cromatografia Líquida , Automação , Proteoma/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Reprodutibilidade dos Testes , Melanoma/metabolismo , Fosfopeptídeos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(34): e2304748120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579178

RESUMO

The global decline of religiosity represents one of the most significant societal shifts in recent history. After millennia of near-universal religious identification, the world is experiencing a regionally uneven trend toward secularization. We propose an explanation of this decline, which claims that automation-the development of robots and artificial intelligence (AI)-can partly explain modern religious declines. We build four unique datasets composed of more than 3 million individuals which show that robotics and AI exposure is linked to 21st-century religious declines across nations, metropolitan regions, and individual people. Key results hold controlling for other technological developments (e.g., electricity grid access and telecommunications development), socioeconomic indicators (e.g., wealth, residential mobility, and demographics), and factors implicated in previous theories of religious decline (e.g., individual choice norms). An experiment also supports our hypotheses. Our findings partly explain contemporary trends in religious decline and foreshadow where religiosity may wane in the future.


Assuntos
Inteligência Artificial , Religião , Humanos , Fatores Socioeconômicos , Automação
8.
Proc Natl Acad Sci U S A ; 120(51): e2307804120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079552

RESUMO

Forms of both simple and complex machine intelligence are increasingly acting within human groups in order to affect collective outcomes. Considering the nature of collective action problems, however, such involvement could paradoxically and unintentionally suppress existing beneficial social norms in humans, such as those involving cooperation. Here, we test theoretical predictions about such an effect using a unique cyber-physical lab experiment where online participants (N = 300 in 150 dyads) drive robotic vehicles remotely in a coordination game. We show that autobraking assistance increases human altruism, such as giving way to others, and that communication helps people to make mutual concessions. On the other hand, autosteering assistance completely inhibits the emergence of reciprocity between people in favor of self-interest maximization. The negative social repercussions persist even after the assistance system is deactivated. Furthermore, adding communication capabilities does not relieve this inhibition of reciprocity because people rarely communicate in the presence of autosteering assistance. Our findings suggest that active safety assistance (a form of simple AI support) can alter the dynamics of social coordination between people, including by affecting the trade-off between individual safety and social reciprocity. The difference between autobraking and autosteering assistance appears to relate to whether the assistive technology supports or replaces human agency in social coordination dilemmas. Humans have developed norms of reciprocity to address collective challenges, but such tacit understandings could break down in situations where machine intelligence is involved in human decision-making without having any normative commitments.


Assuntos
Altruísmo , Normas Sociais , Humanos , Comportamento Cooperativo
9.
Plant J ; 118(2): 584-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141174

RESUMO

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Assuntos
Germinação , Plântula , Fenótipo , Germinação/fisiologia , Sementes , Processamento de Imagem Assistida por Computador
10.
Proteomics ; : e2400049, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192483

RESUMO

Plasma proteomics offers high potential for biomarker discovery, as plasma is collected through a minimally invasive procedure and constitutes the most complex human-derived proteome. However, the wide dynamic range poses a significant challenge. Here, we propose a semi-automated method based on the use of multiple single chain variable fragment antibodies, each enriching for peptides found in up to a few hundred proteins. This approach allows for the analysis of a complementary fraction compared to full proteome analysis. Proteins from pooled plasma were extracted and digested before testing the performance of 29 different antibodies with the aim of reproducibly maximizing peptide enrichment. Our results demonstrate the enrichment of 3662 peptides not detected in neat plasma or negative controls. Moreover, most antibodies were able to enrich for at least 155 peptides across different levels of abundance in plasma. To further reduce analysis time, a combination of antibodies was used in a multiplexed setting. Repeated sample analyses showed low coefficients of variation, and the method is flexible in terms of affinity binders. It does not impose drastic increases in instrument time, thus showing excellent potential for usage in large scale discovery projects.

11.
Proteomics ; : e2400129, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235396

RESUMO

Targeted proteomics, which includes parallel reaction monitoring (PRM), is typically utilized for more precise detection and quantitation of key proteins and/or pathways derived from complex discovery proteomics datasets. Initial discovery-based analysis using data independent acquisition (DIA) can obtain deep proteome coverage with low data missingness while targeted PRM assays can provide additional benefits in further eliminating missing data and optimizing measurement precision. However, PRM method development from bioinformatic predictions can be tedious and time-consuming because of the DIA output complexity. We address this limitation with a Python script that rapidly generates a PRM method for the TIMS-TOF platform using DIA data and a user-defined target list. To evaluate the script, DIA data obtained from HeLa cell lysate (200 ng, 45-min gradient method) as well as canonical pathway information from Ingenuity Pathway Analysis was utilized to generate a pathway-driven PRM method. Subsequent PRM analysis of targets within the example pathway, regulation of apoptosis, resulted in improved chromatographic data and enhanced quantitation precision (100% peptides below 10% CV with a median CV of 2.9%, n = 3 technical replicates). The script is freely available at https://github.com/StevensOmicsLab/PRM-script and provides a framework that can be adapted to multiple DDA/DIA data outputs and instrument-specific PRM method types.

12.
BMC Bioinformatics ; 25(1): 67, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347472

RESUMO

BACKGROUND: Recording and analyzing microbial growth is a routine task in the life sciences. Microplate readers that record dozens to hundreds of growth curves simultaneously are increasingly used for this task raising the demand for their rapid and reliable analysis. RESULTS: Here, we present Dashing Growth Curves, an interactive web application ( http://dashing-growth-curves.ethz.ch/ ) that enables researchers to quickly visualize and analyze growth curves without the requirement for coding knowledge and independent of operating system. Growth curves can be fitted with parametric and non-parametric models or manually. The application extracts maximum growth rates as well as other features such as lag time, length of exponential growth phase and maximum population size among others. Furthermore, Dashing Growth Curves automatically groups replicate samples and generates downloadable summary plots for of all growth parameters. CONCLUSIONS: Dashing Growth Curves is an open-source web application that reduces the time required to analyze microbial growth curves from hours to minutes.


Assuntos
Software , Interpretação Estatística de Dados
13.
J Proteome Res ; 23(10): 4359-4368, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231529

RESUMO

Proximity-dependent biotinylation is an important method to study protein-protein interactions in cells, for which an expanding number of applications has been proposed. The laborious and time-consuming sample processing has limited project sizes so far. Here, we introduce an automated workflow on a liquid handler to process up to 96 samples at a time. The automation not only allows higher sample numbers to be processed in parallel but also improves reproducibility and lowers the minimal sample input. Furthermore, we combined automated sample processing with shorter liquid chromatography gradients and data-independent acquisition to increase the analysis throughput and enable reproducible protein quantitation across a large number of samples. We successfully applied this workflow to optimize the detection of proteasome substrates by proximity-dependent labeling.


Assuntos
Biotinilação , Mapeamento de Interação de Proteínas , Fluxo de Trabalho , Reprodutibilidade dos Testes , Mapeamento de Interação de Proteínas/métodos , Humanos , Proteômica/métodos , Cromatografia Líquida/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Automação
14.
J Proteome Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374182

RESUMO

Photoaffinity labeling (PAL) methodologies have proven to be instrumental for the unbiased deconvolution of protein-ligand binding events in physiologically relevant systems. However, like other chemical proteomic workflows, they are limited in many ways by time-intensive sample manipulations and data acquisition techniques. Here, we describe an approach to address this challenge through the innovation of a carboxylate bead-based protein cleanup procedure to remove excess small-molecule contaminants and couple it to plate-based, proteomic sample processing as a semiautomated solution. The analysis of samples via label-free, data-independent acquisition (DIA) techniques led to significant improvements on a workflow time per sample basis over current standard practices. Experiments utilizing three established PAL ligands with known targets, (+)-JQ-1, lenalidomide, and dasatinib, demonstrated the utility of having the flexibility to design experiments with a myriad of variables. Data revealed that this workflow can enable the confident identification and rank ordering of known and putative targets with outstanding protein signal-to-background enrichment sensitivity. This unified end-to-end throughput strategy for processing and analyzing these complex samples could greatly facilitate efficient drug discovery efforts and open up new opportunities in the chemical proteomics field.

15.
J Proteome Res ; 23(9): 4163-4169, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39163279

RESUMO

This Technical Note presents a comprehensive proteomics workflow for the new combination of Orbitrap and Astral mass analyzers across biofluids, cells, and tissues. Central to our workflow is the integration of Adaptive Focused Acoustics (AFA) technology for cells and tissue lysis to ensure robust and reproducible sample preparation in a high-throughput manner. Furthermore, we automated the detergent-compatible single-pot, solid-phase-enhanced sample Preparation (SP3) method for protein digestion. The synergy of these advanced methodologies facilitates a robust and high-throughput approach for cell and tissue analysis, an important consideration in translational research. This work disseminates our platform workflow, analyzes the effectiveness, demonstrates the reproducibility of the results, and highlights the potential of these technologies in biomarker discovery and disease pathology. For cells and tissues (heart, liver, lung, and intestine) proteomics analysis by data-independent acquisition mode, identifications exceeding 10,000 proteins can be achieved with a 24 min active gradient. In 200 ng injections of HeLa digest across multiple gradients, an average of more than 80% of proteins have a CV less than 20%, and a 45 min run covers ∼90% of the expressed proteome. This complete workflow allows for large swaths of the proteome to be identified and is compatible with diverse sample types.


Assuntos
Proteômica , Proteômica/métodos , Humanos , Células HeLa , Reprodutibilidade dos Testes , Fluxo de Trabalho , Proteoma/análise , Líquidos Corporais/química , Ensaios de Triagem em Larga Escala/métodos , Biomarcadores/análise , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/química
16.
BMC Biotechnol ; 24(1): 4, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243234

RESUMO

BACKGROUND: Modern high-throughput technologies enable the processing of a large number of samples simultaneously, while also providing rapid and accurate procedures. In recent years, automated liquid handling workstations have emerged as an established technology for reproducible sample preparation. They offer flexibility, making them suitable for an expanding range of applications. Commonly, such approaches are well-developed for experimental procedures primarily designed for cell-line processing and xenobiotics testing. Conversely, little attention is focused on the application of automated liquid handlers in the analysis of whole organisms, which often involves time-consuming laboratory procedures. RESULTS: Here, we present a fully automated workflow for all steps, from RNA extraction to real-time PCR processing, for gene expression quantification in the ascidian marine model Ciona robusta. For procedure validation, we compared the results obtained with the liquid handler with those of the classical manual procedure. The outcome revealed comparable results, demonstrating a remarkable time saving particularly in the initial steps of sample processing. CONCLUSIONS: This work expands the possible application fields of this technology to whole-body organisms, mitigating issues that can arise from manual procedures. By minimizing errors, avoiding cross-contamination, decreasing hands-on time and streamlining the procedure, it could be employed for large-scale screening investigations.


Assuntos
Perfilação da Expressão Gênica , Manejo de Espécimes , Automação , Reação em Cadeia da Polimerase em Tempo Real , Análise em Microsséries , Manejo de Espécimes/métodos
17.
J Comput Chem ; 45(27): 2308-2317, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850166

RESUMO

Here, TS-tools is presented, a Python package facilitating the automated localization of transition states (TS) based on a textual reaction SMILES input. TS searches can either be performed at xTB or DFT level of theory, with the former yielding guesses at marginal computational cost, and the latter directly yielding accurate structures at greater expense. On a benchmarking dataset of mono- and bimolecular reactions, TS-tools reaches an excellent success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways - which are typically not benchmarked when developing new automated TS search approaches, yet are relevant for various types of reactivity, cf. solvent- and autocatalysis and enzymatic reactivity - TS-tools retains its ability to identify TS geometries, though a DFT treatment becomes essential in many cases. Throughout the presented applications, a particular emphasis is placed on solvation-induced mechanistic changes, another issue that received limited attention in the automated TS search literature so far.

18.
J Comput Chem ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215569

RESUMO

We present ichor, an open-source Python library that simplifies data management in computational chemistry and streamlines machine learning force field development. Ichor implements many easily extensible file management tools, in addition to a lazy file reading system, allowing efficient management of hundreds of thousands of computational chemistry files. Data from calculations can be readily stored into databases for easy sharing and post-processing. Raw data can be directly processed by ichor to create machine learning-ready datasets. In addition to powerful data-related capabilities, ichor provides interfaces to popular workload management software employed by High Performance Computing clusters, making for effortless submission of thousands of separate calculations with only a single line of Python code. Furthermore, a simple-to-use command line interface has been implemented through a series of menu systems to further increase accessibility and efficiency of common important ichor tasks. Finally, ichor implements general tools for visualization and analysis of datasets and tools for measuring machine-learning model quality both on test set data and in simulations. With the current functionalities, ichor can serve as an end-to-end data procurement, data management, and analysis solution for machine-learning force-field development.

19.
J Clin Microbiol ; 62(5): e0144523, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38557148

RESUMO

The virulence of methicillin-resistant Staphylococcus aureus (MRSA) and its potentially fatal outcome necessitate rapid and accurate detection of patients colonized with MRSA in healthcare settings. Using the BD Kiestra Total Lab Automation (TLA) System in conjunction with the MRSA Application (MRSA App), an imaging application that uses artificial intelligence to interpret colorimetric information (mauve-colored colonies) indicative of MRSA pathogen presence on CHROMagar chromogenic media, anterior nares specimens from three sites were evaluated for the presence of mauve-colored colonies. Results obtained with the MRSA App were compared to manual reading of agar plate images by proficient laboratory technologists. Of 1,593 specimens evaluated, 1,545 (96.98%) were concordant between MRSA App and laboratory technologist reading for the detection of MRSA growth [sensitivity 98.15% (95% CI, 96.03, 99.32) and specificity 96.69% (95% CI, 95.55, 97.60)]. This multi-site study is the first evaluation of the MRSA App in conjunction with the BD Kiestra TLA System. Using the MRSA App, our results showed 98.15% sensitivity and 96.69% specificity for the detection of MRSA from anterior nares specimens. The MRSA App, used in conjunction with laboratory automation, provides an opportunity to improve laboratory efficiency by reducing laboratory technologists' labor associated with the review and interpretation of cultures.


Assuntos
Automação Laboratorial , Técnicas Bacteriológicas , Staphylococcus aureus Resistente à Meticilina , Sensibilidade e Especificidade , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Humanos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Automação Laboratorial/métodos , Técnicas Bacteriológicas/métodos , Automação/métodos , Colorimetria/métodos , Inteligência Artificial
20.
J Clin Microbiol ; 62(5): e0174923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624235

RESUMO

The timely identification of microbial pathogens is essential to guide targeted antimicrobial therapy and ultimately, successful treatment of an infection. However, the yield of standard microbiology testing (SMT) is directly related to the duration of antecedent antimicrobial therapy as SMT culture methods are dependent on the recovery of viable organisms, the fastidious nature of certain pathogens, and other pre-analytic factors. In the last decade, metagenomic next-generation sequencing (mNGS) has been successfully utilized as a diagnostic tool for various applications within the clinical laboratory. However, mNGS is resource, time, and labor-intensive-requiring extensive laborious preliminary benchwork, followed by complex bioinformatic analysis. We aimed to address these shortcomings by developing a largely Automated targeted Metagenomic next-generation sequencing (tmNGS) PipeLine for rapId inFectIous disEase Diagnosis (AMPLIFIED) to detect bacteria and fungi directly from clinical specimens. Therefore, AMPLIFIED may serve as an adjunctive approach to complement SMT. This tmNGS pipeline requires less than 1 hour of hands-on time before sequencing and less than 2 hours of total processing time, including bioinformatic analysis. We performed tmNGS on 50 clinical specimens with concomitant cultures to assess feasibility and performance in the hospital laboratory. Of the 50 specimens, 34 (68%) were from true clinical infections. Specimens from cases of true infection were more often tmNGS positive compared to those from the non-infected group (82.4% vs 43.8%, respectively, P = 0.0087). Overall, the clinical sensitivity of AMPLIFIED was 54.6% with 85.7% specificity, equating to 70.6% and 75% negative and positive predictive values, respectively. AMPLIFIED represents a rapid supplementary approach to SMT; the typical time from specimen receipt to identification of potential pathogens by AMPLIFIED is roughly 24 hours which is markedly faster than the days, weeks, and months required to recover bacterial, fungal, and mycobacterial pathogens by culture, respectively. IMPORTANCE: To our knowledge, this represents the first application of an automated sequencing and bioinformatics pipeline in an exclusively pediatric population. Next-generation sequencing is time-consuming, labor-intensive, and requires experienced personnel; perhaps contributing to hesitancy among clinical laboratories to adopt such a test. Here, we report a strong case for use by removing these barriers through near-total automation of our sequencing pipeline.


Assuntos
Bactérias , Infecções Bacterianas , Fungos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Micoses , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fungos/genética , Fungos/isolamento & purificação , Fungos/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Metagenômica/métodos , Micoses/diagnóstico , Micoses/microbiologia , Automação Laboratorial/métodos , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Fatores de Tempo , Biologia Computacional/métodos , Masculino , Feminino , Criança , Adolescente , Adulto , Pré-Escolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA