Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 24(33): 10396-10401, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116269

RESUMO

Cellular redox homeostasis is essential for maintaining cellular activities, such as DNA synthesis and gene expression. Inspired by this, new therapeutic interventions have been rapidly developed to modulate the intracellular redox state using artificial transmembrane electron transport. However, current approaches that rely on external electric field polarization can disrupt cellular functions, limiting their in vivo application. Therefore, it is crucial to develop novel electric-field-free modulation methods. In this work, we for the first time found that graphene could spontaneously insert into living cell membranes and serve as an electron tunnel to regulate intracellular reactive oxygen species and NADH based on the spontaneous bipolar electrochemical reaction mechanism. This work provides a wireless and electric-field-free approach to regulating cellular redox states directly and offers possibilities for biological applications such as cell process intervention and treatment for neurodegenerative diseases.


Assuntos
Membrana Celular , Grafite , Oxirredução , Espécies Reativas de Oxigênio , Grafite/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Transporte de Elétrons , Membrana Celular/metabolismo , Membrana Celular/química , NAD/química , NAD/metabolismo , Elétrons
2.
Small ; 20(9): e2305067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858925

RESUMO

Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.

3.
Chemistry ; 30(29): e202400078, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470292

RESUMO

Water splitting has become a sustainable and clean alternative for hydrogen production. Commonly, the efficiency of such reactions is intimately related to the physico-chemical properties of the catalysts that constitute the electrolyzer. Thus, the development of simple and fast methods to evaluate the electrocatalytic efficiency of an electrolyzer is highly required. In this work, we present an unconventional method based on the combination of bipolar electrochemistry and light-emitting diodes, which allows the evaluation of the electrocatalytic performance of the two types of catalysts, composing an electrolyzer, namely for oxygen and hydrogen evolution reactions, respectively. The integrated light emission of the diode acts as an optical readout of the electrocatalytic information, which simultaneously depends on the composition of the anode and the cathode. The electrocatalytic activity of Au, Pt, and Ni electrodes, connected to the LED in multiple anode/cathode configurations, towards the water splitting reactions has been evaluated. The efficiency of the electrolyzer can be represented in terms of the onset electric field (ϵonset) for light emission, obtaining variations that are in agreement with data reported with conventional electrochemistry. This work introduces a straightforward method for evaluating electrocatalysts and underscores the importance of material characterization in developing efficient electrolyzers for hydrogen production.

4.
Chemphyschem ; 25(12): e202400133, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38624189

RESUMO

Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.

5.
Chemphyschem ; 25(16): e202400257, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757220

RESUMO

Graphene has gained substantial research interest in many fields due to its remarkable properties among many other two-dimensional materials. In this study, we propose a wireless electrochemical approach, bipolar electrochemistry, for the precise modification of single layers of graphene at predefined locations, such as distinct edges or corners, with a variety of metals or polymers, thus enabling the elaboration of multi-functional monolayer graphene sheets. We illustrate the concept e. g. by depositing multiple metals, or platinum and a catalyst-containing porous polymer on the same graphene sheet, but at separate corners. This configuration allows activating chemiluminescence on the polymer spot, and simultaneously generates the driving force for autonomous motion on the Pt side through the catalytic decomposition of hydrogen peroxide into oxygen bubbles. This integration of different chemical features on the same object, exemplified by these proof-of-principle experiments, enhances the functionality of two-dimensional materials, paving the way for the use of these hybrid materials for a variety of applications, ranging from sensing and catalysis to targeted delivery.

6.
Mikrochim Acta ; 191(3): 137, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358570

RESUMO

An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed  to validate the sensor's efficiency, and the results obtained were both promising and encouraging.


Assuntos
Nitritos , Suor , Titânio , Elementos de Transição , Eletroquímica , Glucose
7.
Nano Lett ; 23(17): 8180-8185, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642420

RESUMO

Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.

8.
Nano Lett ; 23(14): 6406-6413, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436039

RESUMO

In this work, for the first time 3D Ti-Nb meshes of different composition, i.e., Ti, Ti-1Nb, Ti-5Nb, and Ti-10 Nb, were produced by direct ink writing. This additive manufacturing method allows tuning of the mesh composition by simple blending of pure Ti and Nb powders. The 3D meshes are extremely robust with a high compressive strength, giving potential use in photocatalytic flow-through systems. After successful wireless anodization of the 3D meshes toward Nb-doped TiO2 nanotube (TNT) layers using bipolar electrochemistry, they were employed for the first time for photocatalytic degradation of acetaldehyde in a flow-through reactor built based on ISO standards. Nb-doped TNT layers with low concentrations of Nb show superior photocatalytic performance compared with nondoped TNT layers due to the lower amount of recombination surface centers. High concentrations of Nb lead to an increased number of recombination centers within the TNT layers and reduce the photocatalytic degradation rates.

9.
Angew Chem Int Ed Engl ; 63(6): e202312647, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018379

RESUMO

Cable bacteria are multicellular, filamentous bacteria that use internal conductive fibers to transfer electrons over centimeter distances from donors within anoxic sediment layers to oxygen at the surface. We extracted the fibers and used them as free-standing bio-based electrodes to investigate their electrocatalytic behavior. The fibers catalyzed the reversible interconversion of oxygen and water, and an electric current was running through the fibers even when the potential difference was generated solely by a gradient of oxygen concentration. Oxygen reduction as well as oxygen evolution were confirmed by optical measurements. Within living cable bacteria, oxygen reduction by direct electrocatalysis on the fibers and not by membrane-bound proteins readily explains exceptionally high cell-specific oxygen consumption rates observed in the oxic zone, while electrocatalytic water oxidation may provide oxygen to cells in the anoxic zone.


Assuntos
Sedimentos Geológicos , Sulfetos , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Sulfetos/metabolismo , Oxirredução , Bactérias/metabolismo , Oxigênio/metabolismo , Água/metabolismo , Eletrodos
10.
Chemphyschem ; 24(4): e202200779, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36317641

RESUMO

Redox flow batteries based on organic electrolytes are promising energy storage devices, but stable long-term cycling is often difficult to achieve. Bipolar organic charge-storage materials allow the construction of symmetrical flow batteries (i. e., with identical electrolyte composition on both sides), which is a strategy to mitigate crossover-induced degradation. One such class of bipolar compounds are verdazyl radicals, but little is known on their stability/reactivity either as the neutral radical, or in the charged states. Here, we study the chemical properties of a Kuhn-type verdazyl radical (1) and the oxidized/reduced form (1+/- ). Chemical synthesis of the three redox-states provides spectroscopic characterization data, which are used as reference for evaluating the composition of the electrolyte solutions of an H-cell battery during/after cycling. Our data suggest that, rather than the charged states, the decomposition of the parent verdazyl radical is responsible for capacity fade. Kinetic experiments and DFT calculations provide insight in the decomposition mechanism, which is shown to occur by bimolecular disproportionation to form two closed-shell products (leuco-verdazyl 1H and triazole derivative 2).

11.
Chirality ; 35(2): 110-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513396

RESUMO

Microfluidic valves based on chemically responsive materials have gained considerable attention in recent years. Herein, a wireless enantio-responsive valve triggered by bipolar electrochemistry combined with chiral recognition is reported. A conducting polymer actuator functionalized with the enantiomers of an inherently chiral oligomer was used as bipolar valve to cover a tube loaded with a dye and immersed in a solution containing chiral analytes. When an electric field is applied, the designed actuator shows a reversible cantilever-type deflection, allowing the release of the dye from the reservoir. The tube can be opened and closed by simply switching the polarity of the system. Qualitative results show the successful release of the colorant, driven by chirality and redox reactions occurring at the bipolar valve. The device works well even in the presence of chemically different chiral analytes in the same solution. These systems open up new possibilities in the field of microfluidics, including also controlled drug delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Estereoisomerismo , Sistemas de Liberação de Medicamentos/métodos
12.
Nano Lett ; 21(20): 8701-8706, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34609883

RESUMO

In this work, large 3D Ti meshes fabricated by direct ink writing were wirelessly anodized for the first time to prepare highly photocatalytically active TiO2 nanotube (TNT) layers. The use of bipolar electrochemistry enabled the fabrication of TNT layers within the 3D Ti meshes without the establishment of an electrical contact between Ti meshes and the potentiostat, confirming its unique ability and advantage for the synthesis of anodic structures on metallic substrates with a complex geometry. TNT layers with nanotube diameters of up to 110 nm and thicknesses of up to 3.3 µm were formed. The TNT-layer-modified 3D Ti meshes showed a superior performance for the photocatalytic degradation of methylene blue in comparison to TiO2-nanoparticle-decorated and nonanodized Ti meshes (with a thermal oxide layer), resulting in multiple increases in the dye degradation rate. The results presented here open new horizons for the employment of anodized 3D Ti meshes in various flow-through (photo)catalytic reactors.

13.
Angew Chem Int Ed Engl ; 61(3): e202111804, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34705321

RESUMO

Electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) is an extremely important challenge for the electroenzymatic synthesis of many valuable chemicals. Although some important progress has been made with modified electrodes concerning the reduction of NAD+ , the scale-up is difficult due to mass transport limitations inherent to large-size electrodes. Here, we propose instead to employ a dispersion of electrocatalytically active modified microparticles in the bulk of a bipolar electrochemical cell. In this way, redox reactions occur simultaneously on all of these individual microelectrodes without the need of a direct electrical connection. The concept is validated by using [Rh(Cp*)(bpy)Cl]+ functionalized surfaces, either of carbon felt as a reference material, or carbon microbeads acting as bipolar objects. In the latter case, enzymatically active 1,4-NADH is electroregenerated at the negatively polarized face of the particles. The efficiency of the system can be fine-tuned by controlling the electric field in the reaction compartment and the number of dispersed microelectrodes. This wireless bioelectrocatalytic approach opens up very interesting perspectives for electroenzymatic synthesis in the bulk phase.


Assuntos
Complexos de Coordenação/química , NAD/química , Ródio/química , Catálise , Técnicas Eletroquímicas
14.
Small ; 17(32): e2102517, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34269516

RESUMO

Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, the ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aims to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, it is shown that by using membrane inserted carbon nanotube porins (CNTPs) that can act as bipolar nanoelectrodes, one can control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. It is shown that bipolar electrochemical reaction via gold reduction at the nanotubes can be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. The authors provide new mechanistic insight into this newly describe phenomena at the nanoscale. The results presented give rise to a new method using CNTPs to modulate cell behavior via wireless control of membrane electron transfer.


Assuntos
Nanotubos de Carbono , Biomimética , Transporte de Elétrons , Elétrons , Porinas
15.
Chemphyschem ; 22(11): 1094-1100, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826213

RESUMO

This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.

16.
Nanotechnology ; 32(34)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015767

RESUMO

Amongst the different graphene fabrication techniques, bipolar electrochemistry (BPE) has been recently reported as a simple, controllable, low cost, eco-friendly, and scalable method. It consists of a wirelessly placed carbon source between two feeding electrodes subjected to direct current (DC) voltage in a deionized water bath. Although the physicochemical characteristics of produced graphene have been evaluated, the exfoliation and deposition mechanisms are still unclear. In this study, a novel modified BPE system with an electrically-connected graphite-platinum couple acting as the bipolar electrode has been designed in order to decouple and investigate the contribution of anodic/cathodic exfoliation and deposition of graphene in the BPE process. Electron microscopy and Fourier transform infrared spectroscopy results indicate that both anodic and cathodic exfoliation of graphene could take place regardless of the type of polarization; however, the morphology and deposition rate highly depend on the polarization. Furthermore, the graphene fabricated by anodic exfoliation was found to show higher levels of oxidation compared to the graphene produced by cathodic exfoliation.

17.
Chirality ; 33(12): 875-882, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617330

RESUMO

Bipolar electrochemistry has gained increasing attention in recent years as an attractive transduction concept in analytical chemistry in general and, more specifically, in the frame of chiral recognition. Herein, we use this concept of wireless electrochemistry, based on the combination of the enantioselective oxidation of a chiral probe with the emission of light from a light-emitting diode (LED), as an alternative for an easy and straightforward readout of the presence of chiral molecules in solution. A hybrid polymer-microelectronic device was designed, using an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) and a polypyrrole strip as the anode and cathode of a miniaturized LED. The wireless induced redox reactions trigger light emission when the probe with the right chirality is present in solution, whereas no light emission is observed for the opposite enantiomer. The average light intensity shows a linear correlation with the analyte concentration, and the concept opens the possibility to quantify the enantiomeric excess in mixtures of the molecular antipodes.

18.
Angew Chem Int Ed Engl ; 60(26): 14620-14629, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830611

RESUMO

Bipolar electrochemistry could be regarded as a powerful approach for selective surface modification due to the beneficial feature that a wirelessly controllable potential distribution on bipolar electrodes (BPEs). Herein we report a bipolar electrolytic micelle disruption (BEMD) system for the preparation of shaped organic films. A U-shaped bipolar electrolytic system with a sigmoidal potential gradient on the BPE gave gradient-thin films including various interesting organic compounds, such as a polymerizable monomer, an organic pigment and aggregation induced emission (AIE) molecules. The gradient feature was characterized by UV-Vis absorption, thickness measurements and surface morphology analysis. Corresponding patterned films were also fabricated using a cylindrical bipolar electrolytic setup that enables site-selective application of the potential on the BPE. Such a facile BEMD approach will open a long-term perspective with respect to organic film preparation.

19.
Chemphyschem ; 21(7): 600-604, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32031308

RESUMO

We propose a straightforward access to a rotating light-emitting device powered by wireless electrochemistry. A magnetic stirrer is used to rotate a light-emitting diode (LED) due to the intrinsic magnetic properties of the tips that contain iron. At the same time, the LED is submitted to an electric field and acts as a bipolar electrode. The electrochemical processes that are coupled on both extremities of the LED drive an electron flow across the device, resulting in light emission. The variation of the LED alignment in time enables an alternating light emission that is directly controlled by the rotation rate. The stirring also enables a continuous mixing of the electrolyte that improves the stability of the output signal. Finally, the LED brightness can readily reveal a change of chemical composition in the electrolyte solution.

20.
Angew Chem Int Ed Engl ; 59(41): 18244-18248, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652831

RESUMO

We report a new mass spectrometric method for detecting electrogenerated intermediates. This approach is based on simultaneous activation of electrospray ionization and redox reaction on a wireless bipolar ultramicroelectrode, which is fabricated in the tip of a quartz nanopipette. The hollow structure of the ultramicroelectrode permits rapid transferring the transient species from electrode-electrolyte interfaces into the gas phase for mass spectrometric identification on the time scale of microseconds. The long-sought fleeting intermediates including TPrA.+ , whose lifetime in solution is only 200 µs, and catecholamine o-semiquinone radicals, the second-order rate constant of which is typically 109 m-1 s-1 , were successfully identified, helping clarify the previously hidden reaction pathways. Accordingly, our method may have wide applicability in exploring the dynamics of many electrochemical reactions, especially their ultrafast initial steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA