Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664263

RESUMO

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Coração , Engenharia Tecidual , Humanos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Engenharia Tecidual/métodos , Organoides/metabolismo , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cardiopatias Congênitas/genética , Dispositivos Lab-On-A-Chip
2.
Biotechnol Lett ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771508

RESUMO

PURPOSE: Cardiac tissue engineering is suggested as a promising approach to overcome problems associated with impaired myocardium. This is the first study to investigate the use of BC and gelatin for cardiomyocyte adhesion and growth. METHODS: Bacterial cellulose (BC) membranes were produced by Komagataeibacter xylinus and coated or mixed with gelatin to make gelatin-coated BC (BCG) or gelatin-mixed BC (mBCG) scaffolds, respectively. BC based-scaffolds were characterized via SEM, FTIR, XRD, and AFM. Neonatal rat-ventricular cardiomyocytes (nr-vCMCs) were cultured on the scaffolds to check the capability of the composites for cardiomyocyte attachment, growth and expansion. RESULTS: The average nanofibrils diameter in all scaffolds was suitable (~ 30-65 nm) for nr-vCMCs culture. Pore diameter (≥ 10 µm), surface roughness (~ 182 nm), elastic modulus (0.075 ± 0.015 MPa) in mBCG were in accordance with cardiomyocyte requirements, so that mBCG could better support attachment of nr-vCMCs with high concentration of gelatin, and appropriate surface roughness. Also, it could better support growth and expansion of nr-vCMCs due to submicron scale of nanofibrils and proper elasticity (~ 0.075 MPa). The viability of nr-vCMCs on BC and BCG scaffolds was very low even at day 2 of culture (~ ≤ 40%), but, mBCG could promote a metabolic active state of nr-vCMCs until day 7 (~ ≥ 50%). CONCLUSION: According to our results, mBCG scaffold was the most suitable composite for cardiomyocyte culture, regarding its physicochemical and cell characteristics. It is suggested that improvement in mBCG stability and cell attachment features may provide a convenient scaffold for cardiac tissue engineering.

3.
Small ; 19(11): e2206487, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642861

RESUMO

Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.


Assuntos
Miocárdio , Nanoestruturas , Humanos , Miócitos Cardíacos , Células-Tronco , Regeneração
4.
Heart Fail Rev ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943420

RESUMO

Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.

5.
Biotechnol Bioeng ; 120(3): 819-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412070

RESUMO

Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.


Assuntos
Álcool de Polivinil , Engenharia Tecidual , Animais , Suínos , Engenharia Tecidual/métodos , Álcool de Polivinil/química , Carboximetilcelulose Sódica , Hidrogéis/química , Alginatos/química , Metacrilatos/química
6.
Mol Pharm ; 20(1): 57-81, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36413809

RESUMO

With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Hidrogéis/química , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Remodelação Ventricular , Matriz Extracelular/patologia , Miocárdio
7.
Cell Biol Toxicol ; 39(4): 1627-1639, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36029423

RESUMO

Carbon nanotubes (CNTs) have become promising advanced materials and a new tool to specifically interact with electroresponsive cells. Likewise, conductive polymers (CP) appear promising electroactive biomaterial for proliferation of cells. Herein, we have investigated CNT blends with two different conductive polymers, polypyrrole/CNT (PPy/CNT) and PEDOT/CNT to evaluate the growth, survival, and beating behavior of neonatal rat ventricular myocytes (NRVM). The combination of CP/CNT not only shows excellent biocompatibility on NRVM, after 2 weeks of culture, but also exerts functional effects on networks of cardiomyocytes. NRVMs cultured on CNT-based substrates exhibited improved cellular function, i.e., homogeneous, non-arrhythmogenic, and more frequent spontaneous beating; particularly PEDOT/CNT substrates, which yielded to higher beating amplitudes, thus suggesting a more mature cardiac phenotype. Furthermore, cells presented enhanced structure: aligned sarcomeres, organized and abundant Connexin 43 (Cx43). Finally, no signs of induced hypertrophy were observed. In conclusion, the combination of CNT with CP produces high viability and promotes cardiac functionality, suggesting great potential to generate scaffolding supports for cardiac tissue engineering.


Assuntos
Miócitos Cardíacos , Nanotubos de Carbono , Ratos , Animais , Polímeros , Alicerces Teciduais , Animais Recém-Nascidos , Pirróis
8.
Environ Res ; 238(Pt 1): 116933, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652218

RESUMO

Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Engenharia Tecidual , Nanomedicina/métodos , Nanotecnologia , Preparações Farmacêuticas , Diagnóstico Precoce
9.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047216

RESUMO

Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Organoides , Medicina Regenerativa/métodos , Fibroblastos
10.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838907

RESUMO

Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.


Assuntos
Quitosana , Infarto do Miocárdio , Humanos , Quitosana/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual
11.
Am J Physiol Heart Circ Physiol ; 323(4): H738-H748, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053751

RESUMO

After a myocardial infarction (MI), the heart undergoes changes including local remodeling that can lead to regional abnormalities in mechanical and electrical properties, ultimately increasing the risk of arrhythmias and heart failure. Although these responses have been successfully recapitulated in animal models of MI, local changes in tissue and cell-level mechanics caused by MI remain difficult to study in vivo. Here, we developed an in vitro cardiac microtissue (CMT) injury system that through acute focal injury recapitulates aspects of the regional responses seen following an MI. With a pulsed laser, cell death was induced in the center of the microtissue causing a loss of calcium signaling and a complete loss of contractile function in the injured region and resulting in a 39% reduction in the CMT's overall force production. After 7 days, the injured area remained void of cardiomyocytes (CMs) and showed increased expression of vimentin and fibronectin, two markers for fibrotic remodeling. Interestingly, although the injured region showed minimal recovery, calcium amplitudes in uninjured regions returned to levels comparable with control. Furthermore, overall force production returned to preinjury levels despite the lack of contractile function in the injured region. Instead, uninjured regions exhibited elevated contractile function, compensating for the loss of function in the injured region, drawing parallels to changes in tissue-level mechanics seen in vivo. Overall, this work presents a new in vitro model to study cardiac tissue remodeling and electromechanical changes after injury.NEW & NOTEWORTHY We report an in vitro cardiac injury model that uses a high-powered laser to induce regional cell death and a focal fibrotic response within a human-engineered cardiac microtissue. The model captures the effects of acute injury on tissue response, remodeling, and electromechanical recovery in both the damaged region and surrounding healthy tissue, modeling similar changes to contractile function observed in vivo following myocardial infarction.


Assuntos
Fibronectinas , Infarto do Miocárdio , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Vimentina/metabolismo
12.
Small ; 18(28): e2201330, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670145

RESUMO

Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Reperfusão , Traumatismo por Reperfusão/diagnóstico
13.
Heart Fail Rev ; 27(4): 1443-1467, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34342769

RESUMO

Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.


Assuntos
Materiais Biocompatíveis , Infarto do Miocárdio , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/metabolismo , Humanos , Miocárdio/metabolismo , Engenharia Tecidual/métodos
14.
Nanomedicine ; 44: 102567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595015

RESUMO

Myocardial infarction remains the leading cause of death in the western world. Since the heart has limited regenerative capabilities, several cardiac tissue engineering (CTE) strategies have been proposed to repair the damaged myocardium. A novel electrospun construct with aligned and electroconductive fibers combining gelatin, poly(lactic-co-glycolic) acid and polypyrrole that may serve as a cardiac patch is presented. Constructs were characterized for fiber alignment, surface wettability, shrinkage and swelling behavior, porosity, degradation rate, mechanical properties, and electrical properties. Cell-biomaterial interactions were studied using three different types of cells, Neonatal Rat Ventricular Myocytes (NRVM), human lung fibroblasts (MRC-5) and induced pluripotent stem cells (iPSCs). All cell types showed good viability and unique organization on construct surfaces depending on their phenotype. Finally, we assessed the maturation status of NRVMs after 14 days by confocal images and qRT-PCR. Overall evidence supports a proof-of-concept that this novel biomaterial construct could be a good candidate patch for CTE applications.


Assuntos
Polímeros , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Humanos , Miócitos Cardíacos/metabolismo , Polímeros/metabolismo , Pirróis , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais
15.
Curr Cardiol Rep ; 24(5): 473-486, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247166

RESUMO

PURPOSE OF REVIEW: Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Arritmias Cardíacas/induzido quimicamente , Diferenciação Celular , Desenvolvimento de Medicamentos , Humanos , Miócitos Cardíacos/fisiologia , Engenharia Tecidual
16.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408844

RESUMO

The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes , Bioengenharia , Cardiopatias/terapia , Humanos , Miócitos Cardíacos , Medicina Regenerativa , Engenharia Tecidual
17.
Biotechnol Bioeng ; 118(6): 2312-2325, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675237

RESUMO

Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) are the two most investigated biopolymers for various tissue engineering applications. However, their poor tensile strength renders them unsuitable for cardiac tissue engineering (CTE). In this study, we developed and evaluated PVA-PVP-based patches, plasticized with glycerol or propylene glycol (0.1%-0.4%; v:v), for their application in CTE. The cardiac patches were evaluated for their physico-chemical (weight, thickness, folding endurance, FT-IR, and swelling behavior) and mechanical properties. The optimized patches were characterized for their ability to support in vitro attachment, viability, proliferation, and beating behavior of neonatal mouse cardiomyocytes (CMs). In vivo evaluation of the cardiac patches was done under the subcutaneous skin pouch and heart of rat models. Results showed that the optimized molar ratio of PVA:PVP with plasticizers (0.3%; v-v) resulted in cardiac patches, which were dry at room temperature and had desirable folding endurance of at least 300, a tensile strength of 6-23 MPa and, percentage elongation at break of more than 250%. Upon contact with phosphate-buffered saline, these PVA-PVP patches formed hydrogel patches having the tensile strength of 1.3-3.0 MPa. The patches supported the attachment, viability, and proliferation of primary neonatal mouse CMs and were nonirritant and noncorrosive to cardiac cells. In vivo transplantation of cardiac patches into a subcutaneous pouch and on the heart of rat models revealed them to be biodegradable, biocompatible, and safe for use in CTE applications.


Assuntos
Miócitos Cardíacos/citologia , Plastificantes/química , Álcool de Polivinil/química , Povidona/química , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Coração , Hidrogéis , Teste de Materiais , Camundongos , Ratos , Ratos Sprague-Dawley , Resistência à Tração
18.
Mikrochim Acta ; 188(10): 352, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554325

RESUMO

Extracellular ATP as a purinergic signaling molecule, together with ATP receptor, are playing an important role in tumor growth, therapy resistance, and host immunity suppression. Meanwhile ATP is a crucial indicator for cellular energy status and viability, thus a vital variable for tissue regeneration and in vitro tissue engineering. Most recent studies on COVID-19 virus suggest infection caused ATP deficit and release as a major characterization at the early stage of the disease and major causes for disease complications. Thus, imaging ATP molecule in both cellular and extracellular contexts has many applications in biology, engineering, and clinics. A sensitive and selective fluorescence "signal-on" probe for ATP detection was constructed, based on the base recognition between a black hole quencher (BHQ)-labeled aptamer oligonucleotide and a fluorophore (Cy5)-labeled reporter flare. The probe was able to detect ATP in solution with single digit µM detection limit. With the assistance of lipofectamine, this probe efficiently entered and shined in the model cells U2OS within 3 h. Further application of the probe in specific scenery, cardio-tissue engineering, was also tested where the ATP aptamer complex was able to sense cellular ATP status in a semi-quantitative manner, representing a novel approach for selection of functional cardiomyocytes for tissue engineering. At last a slight change in probe configuration in which a flexible intermolecular A14 linker was introduced granted regeneration capability. These data support the application of this probe in multiple circumstances where ATP measurement or imaging is on demand.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos , Carbocianinas , Corantes Fluorescentes , Animais , Animais Recém-Nascidos , Linhagem Celular , Fluorescência , Humanos , Miócitos Cardíacos , Ratos
19.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540699

RESUMO

Cardiac tissue engineering is very much in a current focus of regenerative medicine research as it represents a promising strategy for cardiac disease modelling, cardiotoxicity testing and cardiovascular repair. Advances in this field over the last two decades have enabled the generation of human engineered cardiac tissue constructs with progressively increased functional capabilities. However, reproducing tissue-like properties is still a pending issue, as constructs generated to date remain immature relative to native adult heart. Moreover, there is a high degree of heterogeneity in the methodologies used to assess the functionality and cardiac maturation state of engineered cardiac tissue constructs, which further complicates the comparison of constructs generated in different ways. Here, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, and types of engineering strategies utilized to date. Moreover, we discuss the main functional assays used to evaluate the cardiac maturation state of the constructs, both at the cellular and the tissue levels. We trust that researchers interested in developing engineered cardiac tissue constructs will find the information reviewed here useful. Furthermore, we believe that providing a unified framework for comparison will further the development of human engineered cardiac tissue constructs displaying the specific properties best suited for each particular application.


Assuntos
Cardiopatias/terapia , Miocárdio , Medicina Regenerativa , Engenharia Tecidual , Animais , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes , Alicerces Teciduais
20.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445255

RESUMO

One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.


Assuntos
Arritmias Cardíacas , Materiais Biocompatíveis , Condutividade Elétrica , Infarto do Miocárdio , Miocárdio/metabolismo , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA