RESUMO
Chemotherapy is designed to induce cell death. However, at non-lethal doses, cancer cells can choose to remain proliferative or become senescent. The slow development of senescence makes studying this decision challenging. Here, by analyzing single-cell p21 dynamics before, during, and days after drug treatment, we link three distinct patterns of early p21 dynamics to final cell fate. Surprisingly, while high p21 expression is classically associated with senescence, we find the opposite at early times during drug treatment: most senescence-fated cells express much lower p21 levels than proliferation-fated cells. We demonstrate that these dynamics lead to a p21 "Goldilocks zone" for proliferation, in which modest increases of p21 expression can lead to an undesirable increase of cancer cell proliferation. Our study identifies a counter-intuitive role for early p21 dynamics in the cell-fate decision and pinpoints a source of proliferative cancer cells that can emerge after exposure to non-lethal doses of chemotherapy.
Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.
Assuntos
Epigen/química , Epirregulina/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Cristalografia por Raios X , Epigen/metabolismo , Epirregulina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Modelos Moleculares , Multimerização ProteicaRESUMO
Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.
Assuntos
Embrião de Mamíferos/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , CamundongosRESUMO
Embryo development is a dynamic process governed by the regulation of timing and sequences of gene expression, which control the proper growth of the organism. Although many genetic programmes coordinating these sequences are common across species, the timescales of gene expression can vary significantly among different organisms. Currently, substantial experimental efforts are focused on identifying molecular mechanisms that control these temporal aspects. In contrast, the capacity of established mathematical models to incorporate tempo control while maintaining the same dynamical landscape remains less understood. Here, we address this gap by developing a mathematical framework that links the functionality of developmental programmes to the corresponding gene expression orbits (or landscapes). This unlocks the ability to find tempo differences as perturbations in the dynamical system that preserve its orbits. We demonstrate that this framework allows for the prediction of molecular mechanisms governing tempo, through both numerical and analytical methods. Our exploration includes two case studies: a generic network featuring coupled production and degradation, with a particular application to neural progenitor differentiation; and the repressilator. In the latter, we illustrate how altering the dimerisation rates of transcription factors can decouple the tempo from the shape of the resulting orbits. We conclude by highlighting how the identification of orthogonal molecular mechanisms for tempo control can inform the design of circuits with specific orbits and tempos.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Animais , Desenvolvimento Embrionário/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Modelos GenéticosRESUMO
The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Proteínas do Citoesqueleto , Via de Sinalização Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animais , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Transdução de Sinais , Embrião de Mamíferos/metabolismo , Mutação/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte Proteico , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genéticaRESUMO
An efficient, generalizable method for genome-wide mapping of single-cell histone modifications or chromatin-binding proteins is lacking. Here, we develop CoBATCH, combinatorial barcoding and targeted chromatin release, for single-cell profiling of genomic distribution of chromatin-binding proteins in cell culture and tissue. Protein A in fusion to Tn5 transposase is enriched through specific antibodies to genomic regions, and Tn5 generates indexed chromatin fragments ready for library preparation and sequencing. Importantly, this strategy enables not only low-input epigenomic profiling in intact tissues but also measures scalable up to tens of thousands of single cells per experiment under both native and cross-linked conditions. CoBATCH produces â¼12,000 reads/cell with extremely low background. Mapping of endothelial cell lineages from ten embryonic mouse organs through CoBATCH allows for efficient deciphering of epigenetic heterogeneity of cell populations and cis-regulatory mechanisms. Thus, obviating specialized devices, CoBATCH is broadly applicable and easily deployable for single-cell profiling of protein-DNA interactions.
Assuntos
Cromatina/genética , Epigenoma , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Acetilação , Animais , Linhagem Celular , Cromatina/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Processamento de Proteína Pós-TraducionalRESUMO
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-mediated reprogramming and show that cells bifurcate into two categories, reprogramming potential (RP) or non-reprogramming (NR). We further show that Klf4 contributes to Cd34+/Fxyd5+/Psca+ keratinocyte-like NR fate and that IFN-γ impedes the final transition to chimera-competent pluripotency along the RP cells. We analyze more than 150,000 single cells from both OSK and chemical reprograming and identify additional NR/RP bifurcation points. Our work reveals a generic bifurcation model for cell fate decisions during somatic cell reprogramming that may be applicable to other systems and inspire further improvements for reprogramming.
Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Análise de Sequência de RNA , Análise de Célula Única , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Assuntos
Dieta , Nutrientes , Feminino , Gravidez , Humanos , Vitaminas , Diferenciação Celular , Envelhecimento/fisiologiaRESUMO
After the ejection of viral DNA into the host cytoplasm, the temperate bacteriophage (phage) lambda integrates a cascade of expressions from various regulatory genes, coupled with DNA replication, to commit to a decision between lysis and lysogeny. Higher multiplicity of infection (MOI) greatly shifts the decision toward the lysogenic pathway. However, how the phage separates the MOI from replicated viral DNA during lysis-lysogeny decision-making is unclear. To quantitatively understand the role of viral DNA replication, we constructed a reporter system facilitating the visualization of individual copies of phage DNA throughout the phage life cycle, along with the lysis-lysogeny reporters. We showed that intracellular viral DNA diverges between the lytic and lysogenic pathways from the early phase of the infection cycle, mostly due to the synchronization and success of DNA injection, as well as the competition for replication resources, rather than the replication rate. Strikingly, we observed two distinct replication patterns during lysogenization and surprisingly heterogeneous integration kinetics, which advances our understanding of temperate phage life cycles. We revealed that the weak repression function of Cro is critical for an optimal replication rate and plays a crucial role in establishing stable lysogens. IMPORTANCE: Temperate bacteriophages, such as lambda, incorporate environmental cues including host abundance and nutrient conditions to make optimal decisions between propagation and dormancy. A higher phage-to-host ratio or multiplicity of infection (MOI) during λ infection strongly biases toward lysogeny. However, a comprehensive understanding of this decision-making process and the impact of phage replication prior to the decision is yet to be achieved. Here, we used fluorescence microscopy to quantitatively track the spatiotemporal progression of viral DNA replication in individual cells with different cell fates. The implementation of this fluorescent reporter system and quantitative analysis workflow opens a new avenue for future studies to delve deeper into various types of virus-host interactions at a high resolution.
RESUMO
Most mammalian cells have an intrinsic circadian clock that coordinates metabolic activity with the daily rest and wake cycle. The circadian clock is known to regulate cell differentiation, but how continuous daily oscillations of the internal clock can control a much longer, multiday differentiation process is not known. Here, we simultaneously monitor circadian clock and adipocyte-differentiation progression live in single cells. Strikingly, we find a bursting behavior in the cell population whereby individual preadipocytes commit to differentiate primarily during a 12-h window each day, corresponding to the time of rest. Daily gating occurs because cells irreversibly commit to differentiate within only a few hours, which is much faster than the rest phase and the overall multiday differentiation process. The daily bursts in differentiation commitment result from a differentiation-stimulus driven variable and slow increase in expression of PPARG, the master regulator of adipogenesis, overlaid with circadian boosts in PPARG expression driven by fast, clock-driven PPARG regulators such as CEBPA. Our finding of daily bursts in cell differentiation only during the circadian cycle phase corresponding to evening in humans is broadly relevant, given that most differentiating somatic cells are regulated by the circadian clock. Having a restricted time each day when differentiation occurs may open therapeutic strategies to use timed treatment relative to the clock to promote tissue regeneration.
Assuntos
Adipócitos , Adipogenia , Relógios Circadianos , Ritmo Circadiano , PPAR gama , Adipócitos/citologia , Adipócitos/fisiologia , Adipogenia/genética , Adipogenia/fisiologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Humanos , Camundongos , PPAR gama/genética , PPAR gama/metabolismoRESUMO
Recent studies have revealed that extensive heterogeneity of biological systems arises through various routes ranging from intracellular chromosome segregation to spatiotemporally varying biochemical stimulations. However, the contribution of physical microenvironments to single-cell heterogeneity remains largely unexplored. Here, we show that a homogeneous population of non-small-cell lung carcinoma develops into heterogeneous subpopulations upon application of a homogeneous physical compression, as shown by single-cell transcriptome profiling. The generated subpopulations stochastically gain the signature genes associated with epithelial-mesenchymal transition (EMT; VIM, CDH1, EPCAM, ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4), respectively. Trajectory analysis revealed two bifurcated paths as cells evolving upon the physical compression, along each path the corresponding signature genes (epithelial or mesenchymal) gradually increase. Furthermore, we show that compression increases gene expression noise, which interplays with regulatory network architecture and thus generates differential cell-fate outcomes. The experimental observations of both single-cell sequencing and single-molecule fluorescent in situ hybridization agrees well with our computational modeling of regulatory network in the EMT process. These results demonstrate a paradigm of how mechanical stimulations impact cell-fate determination by altering transcription dynamics; moreover, we show a distinct path that the ecology and evolution of cancer interplay with their physical microenvironments from the view of mechanobiology and systems biology, with insight into the origin of single-cell heterogeneity.
Assuntos
Tamanho Celular , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fenômenos Biofísicos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Análise de Célula ÚnicaRESUMO
When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda's decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision-lysis upon single-phage infection and lysogeny at higher MOI.
Assuntos
Bacteriófago lambda/fisiologia , Lisogenia , Modelos Biológicos , Replicação Viral , Dosagem de Genes , Regulação Viral da Expressão Gênica , Genoma ViralRESUMO
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Assuntos
MicroRNAs , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Flavonoides/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias/tratamento farmacológico , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Metástase NeoplásicaRESUMO
Despite clear physiological roles, the ventromedial hypothalamus (VMH) developmental programs are poorly understood. Here, we asked whether the proneural gene achaete-scute homolog 1 (Ascl1) contributes to VMH development. Ascl1 transcripts were detected in embryonic day (E) 10.5 to postnatal day 0 VMH neural progenitors. The elimination of Ascl1 reduced the number of VMH neurons at E12.5 and E15.5, particularly within the VMH-central (VMHC) and -dorsomedial (VMHDM) subdomains, and resulted in a VMH cell fate change from glutamatergic to GABAergic. We observed a loss of Neurog3 expression in Ascl1-/- hypothalamic progenitors and an upregulation of Neurog3 when Ascl1 was overexpressed. We also demonstrated a glutamatergic to GABAergic fate switch in Neurog3-null mutant mice, suggesting that Ascl1 might act via Neurog3 to drive VMH cell fate decisions. We also showed a concomitant increase in expression of the central GABAergic fate determinant Dlx1/2 in the Ascl1-null hypothalamus. However, Ascl1 was not sufficient to induce an ectopic VMH fate when overexpressed outside the normal window of competency. Combined, Ascl1 is required but not sufficient to specify the neurotransmitter identity of VMH neurons, acting in a transcriptional cascade with Neurog3.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios GABAérgicos/metabolismo , Transmissão Sináptica/genética , Núcleo Hipotalâmico Ventromedial/embriologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genéticaRESUMO
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Assuntos
Osteoartrite , Osteoporose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Osteoartrite/metabolismo , Diferenciação Celular , Senescência CelularRESUMO
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Assuntos
Genoma , Fatores de Transcrição , Diferenciação Celular , Linhagem da Célula/genética , Linfócitos T , Fatores de Transcrição/genéticaRESUMO
Herein, we provide a brief overview of complex systems theory approaches to investigate the genomic mechanism of cell-fate changes. Cell trajectories across the epigenetic landscape, whether in development, environmental responses, or disease progression, are controlled by extensively coordinated genome-wide gene expression changes. The elucidation of the mechanisms underlying these coherent expression changes is of fundamental importance in cell biology and for paving the road to new therapeutic approaches. In previous studies, we pointed at dynamic criticality as a plausible characteristic of genome-wide transition dynamics guiding cell fate. Whole-genome expression develops an engine-like organization (genome engine) in order to establish an autonomous dynamical system, capable of both homeostasis and transition behaviors. A critical set of genes behaves as a critical point (CP) that serves as the organizing center of cell-fate change. When the system is pushed away from homeostasis, the state change that occurs at the CP makes local perturbation spread over the genome, demonstrating self-organized critical (SOC) control of genome expression. Oscillating-Mode genes (which normally keep genome expression on pace with microenvironment fluctuations), when in the presence of an effective perturbative stimulus, drive the dynamics of synchronization, and thus guide the cell-fate transition.
Assuntos
Genoma , Genômica , Diferenciação Celular/genéticaRESUMO
Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Gônadas/metabolismo , Organogênese/genética , Processos de Determinação Sexual/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Feminino , Humanos , Masculino , Ovário , Fenótipo , TestículoRESUMO
The goal of preimplantation development is to establish the fates of the embryonic and extra-embryonic cells. However, when and how cell fates are determined during early mammalian embryonic development remains unclear. We report that the high mobility group (HMG) protein family member HMGA1 was distributed differentially in mouse two-cell blastomeres. Knockdown of Hmga1 expression in one of the two cells reduced the number of cells contributing to the inner cell mass (ICM), suggesting that differential distribution of HMGA1 in the blastomeres in two-cell mouse embryos affected the selection of embryonic cell lineages. Mechanistically, HMGA1 promotes the expression of the ICM-specific gene Sox2. The results of this study show that mouse embryos demonstrate heterogeneity as early as the two-cell stage, and that these differences are related to cell-fate differentiation in early mouse embryos.
Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Proteína HMGA1a/metabolismo , Oócitos , RNA Mensageiro Estocado/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/citologia , Oócitos/metabolismo , GravidezRESUMO
The Delta-Notch-Hes signaling pathway is involved in various developmental processes ranging from the formation of somites to the dynamic fine-grained patterns of cell types in developing or regenerating tissues. Such broad patterning capabilities rely in part on the versatile and tunable dynamics of the Notch-Hes feedback circuit eliciting both pulsatile and switching behaviors. This raises the theoretical issue of which specific spatiotemporal features emerge from lateral inhibition between cells that can display and transit between monostable, oscillatory and bistable regimes. To address this issue, I consider a discrete cell lattice model where intracellular dynamics is described by a phase-like variable and displays a typical cross-shaped phase diagram. Model analysis determines how the existence and stability of many spatially inhomogeneous and temporally synchronized states depends on key intracellular and intercellular parameters. It reveals a parameter-dependent multistability between those diverse spatiotemporal patterns, giving rise to tunable and robust developmental transition scenarios ensuring defect-free spatial patterns. Such broad repertoire and multistability of spatiotemporal patterns is corroborated with regulatory network modeling of the Delta-Notch-Hes pathway.