Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447836

RESUMO

The current trends in 5G and 6G systems anticipate vast communication capabilities and the deployment of massive heterogeneous connectivity with more than a million internet of things (IoT) and other devices per square kilometer and up to ten million gadgets in 6G scenarios. In addition, the new generation of smart industries and the energy of things (EoT) context demand novel, reliable, energy-efficient network protocols involving massive sensor cooperation. Such scenarios impose new demands and opportunities to cope with the ever-growing cooperative dense ad hoc environments. Position location information (PLI) plays a crucial role as an enabler of several location-aware network protocols and applications. In this paper, we have proposed a novel context-aware statistical dead reckoning localization technique suitable for high dense cooperative sensor networks, where direct angle and distance estimations between peers are not required along the route, as in other dead reckoning-based localization approaches, but they are obtainable from the node's context information. Validation of the proposed technique was assessed in several scenarios through simulations, achieving localization errors as low as 0.072 m for the worst case analyzed.


Assuntos
Internet das Coisas , Conscientização , Comunicação , Indústrias
2.
Sensors (Basel) ; 22(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35214221

RESUMO

Augmented reality (AR) applications are increasingly being used in various fields (e.g., design, maintenance, assembly, repair, training, etc.), as AR techniques help improve efficiency and reduce costs. Moreover, collaborative AR systems extend applicability, allowing for collaborative environments for different roles. In this paper, we propose a multi-user collaborative AR system (aptly called the "multi-user collaborative system", or MUCSys); it is composed of three ends-MUCStudio, MUCView, and MUCServer. MUCStudio aims to construct industrial content with CAD model transformation, simplification, database update, marker design, scene editing, and exportation, while MUCView contains sensor data analysis, real-time localization, scene loading, annotation editing, and virtual-real rendering. MUCServer-as the bridge between MUCStudio and MUCView-presents collaborative and database services. To achieve this, we implemented the algorithms of local map establishment, global map registration, optimization, and network synchronization. The system provides AR services for diverse industrial processes via three collaborative ways-remote support, collaborative annotation, and editing. According to the system, applications for cutting machines were presented to improve efficiency and reduce costs, covering cutting head designs, production line sales, and cutting machine inspections. Finally, a user study was performed to prove the usage experience of the system.


Assuntos
Realidade Aumentada , Algoritmos , Interface Usuário-Computador
3.
Sensors (Basel) ; 16(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231916

RESUMO

Location information is a key element of participatory sensing. Many mobile and sensing applications require location information to provide better recommendations, object search and trip planning. However, continuous GPS positioning consumes much energy, which may drain the battery of mobile devices quickly. Although WiFi and cell tower positioning are alternatives, they provide lower accuracy compared to GPS. This paper solves the above problem by proposing a novel localization scheme through the collaboration of multiple mobile devices to reduce energy consumption and provide accurate positioning. Under our scheme, the mobile devices are divided into three groups, namely the broadcaster group, the location information receiver group and the normal participant group. Only the broadcaster group and the normal participant group use their GPS. The location information receiver group, on the other hand, makes use of the locations broadcast by the broadcaster group to estimate their locations. We formulate the broadcaster set selection problem and propose two novel algorithms to minimize the energy consumption in collaborative localization. Simulations with real traces show that our proposed solution can save up to 68% of the energy of all of the participants and provide more accurate locations than WiFi and cellular network positioning.

4.
Sensors (Basel) ; 16(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649176

RESUMO

Localization is essential in wireless sensor networks. To our knowledge, no prior work has utilized low-cost devices for collaborative localization based on only ambient sound, without the support of local infrastructure. The reason may be the fact that most low-cost devices are indeterministic and suffer from uncertain input latencies. This uncertainty makes accurate localization challenging. Therefore, we present a collaborative localization algorithm (Cooperative Localization on Android with ambient Sound Sources (CLASS)) that simultaneously localizes the position of indeterministic devices and ambient sound sources without local infrastructure. The CLASS algorithm deals with the uncertainty by splitting the devices into subsets so that outliers can be removed from the time difference of arrival values and localization results. Since Android is indeterministic, we select Android devices to evaluate our approach. The algorithm is evaluated with an outdoor experiment and achieves a mean Root Mean Square Error (RMSE) of 2.18 m with a standard deviation of 0.22 m. Estimated directions towards the sound sources have a mean RMSE of 17.5 ° and a standard deviation of 2.3 °. These results show that it is feasible to simultaneously achieve a relative positioning of both devices and sound sources with sufficient accuracy, even when using non-deterministic devices and platforms, such as Android.

5.
Sensors (Basel) ; 15(10): 25103-22, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26426023

RESUMO

Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA