Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Oral Rehabil ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152540

RESUMO

OBJECTIVE: Anterior disc displacement (ADD) has been used to establish temporomandibular joint disorder (TMD) models. Based on whether preserve of the retrodiscal attachment, the modelling methodologies include ADD with dissecting the retrodiscal attachment (ADDwd) and ADD without dissecting the retrodiscal attachment (ADDwod). This article aims to determine which model better matches the micromechanical and microstructural progression of TMD. METHODS: Through meticulous microscopic observations, the microstructure and micromechanical deformation of the TMJ discs in ADDwd and ADDwod rabbit models were compared at 2 and 20 weeks. RESULT: Scanning electron microscopy and transmission electron microscopy showed that collagen fibres became slenderized and straightened, collagen fibrils lost diameter and arrangement in the ADDwd group at 2 weeks. Meanwhile, nanoindentation and atomic electron microscopy showed that the micro- and nano- mechanical properties decreased dramatically. However, the ADDwod group exhibited no significant microstructure and micromechanical deformations at 2 weeks. Dissection of the retrodiscal attachment contribute in the acceleration of disease progression at the early stage, the devastating discal phenotype remained fundamentally the same within the two models at 20 weeks. CONCLUSION: ADDwod models, induced stable and persistent disc deformation, therefore, can better match the progression of TMD. While ADDwd models can be considered for experiments which aim to obtain advanced phenotype in a short time.

2.
Dent Mater ; 40(8): 1282-1295, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871525

RESUMO

OBJECTIVE: This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS: The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS: This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE: The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.


Assuntos
Fosfatos de Cálcio , Dentina , Remineralização Dentária , Remineralização Dentária/métodos , Humanos , Fosfatos de Cálcio/química , Dentina/efeitos dos fármacos , Biomimética , Materiais Biomiméticos/química
3.
Adv Healthc Mater ; : e2400693, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795005

RESUMO

Collagen is a complex, large protein molecule that presents a challenge in delivering it to the skin due to its size and intricate structure. However, conventional collagen delivery methods are either invasive or may affect the protein's structural integrity. This study introduces a novel approach involving the encapsulation of collagen monomers within zwitterionic nanoliposomes, termed Lip-Cols, and the controlled formation of collagen fibrils through electric fields (EF) stimulation. The results reveal the self-assembly process of Lip-Cols through electroporation and a pH gradient change uniquely triggered by EF, leading to the alignment and aggregation of Lip-Cols on the electrode interface. Notably, Lip-Cols exhibit the capability to direct the orientation of collagen fibrils within human dermal fibroblasts. In conjunction with EF, Lip-Cols can deliver collagen into the dermal layer and increase the collagen amount in the skin. The findings provide novel insights into the directed formation of collagen fibrils via electrical stimulation and the potential of Lip-Cols as a non-invasive drug delivery system for anti-aging applications.

4.
J Biomater Sci Polym Ed ; 35(10): 1523-1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574261

RESUMO

The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2ß1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2ß1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2ß1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.


Assuntos
Adesão Celular , Colágeno , Integrina alfa2beta1 , Ligação Proteica , Integrina alfa2beta1/metabolismo , Integrina alfa2beta1/química , Humanos , Colágeno/química , Colágeno/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Animais , Engenharia Tecidual/métodos , Linhagem Celular Tumoral
5.
Regen Biomater ; 11: rbae070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022124

RESUMO

A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized in vitro a functional mineralized collagen fibril (MCF) material by utilizing the method of in situ co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.

6.
Acta Biomater ; 179: 1-12, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561073

RESUMO

Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.


Assuntos
Calcificação Fisiológica , Vertebrados , Animais , Osso e Ossos , Dente/química , Humanos , Dentina/química , Escamas de Animais/química
7.
J Mech Behav Biomed Mater ; 153: 106471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458079

RESUMO

Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.


Assuntos
Osso e Ossos , Fraturas Ósseas , Humanos , Estresse Mecânico , Osso e Ossos/metabolismo , Colágeno/química , Minerais/metabolismo
8.
J Biomech ; 169: 112145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761745

RESUMO

To investigate the optimal cutting depth (Cap) in small incision lenticule extraction from the perspective of corneal biomechanics, a three-dimensional finite element model of the cornea was established using a stromal sub-regional material model to simulate small incision lenticule extraction. The displacement difference PΔ at the central point of the posterior corneal surface before and after lenticule extraction, as well as the von Mises stress at four points of different thicknesses in the center of the cornea, were analyzed using the finite element model considering the hyperelastic property and the difference in stiffness between the anterior and posterior of the cornea. The numerical curves of PΔ-Cap and von Mises Stress-Cap relations at different diopters show that the displacement difference PΔ has a smallest value at the same diopter. In this case, the von Mises stress at four points with different thicknesses in the center of the cornea was also minimal. Which means that the optimal cutting depth exsisting in the cornea. Moreover, PΔ-Cap curves for different depth of stromal stiffness boundaries show that the optimal cap thickness would change with the depth of the stromal stiffness boundary. These results are of guiding significance for accurately formulating small incision lenticule extraction surgery plans and contribute to the advancement of research on the biomechanical properties of the cornea.


Assuntos
Córnea , Análise de Elementos Finitos , Modelos Biológicos , Humanos , Córnea/cirurgia , Córnea/fisiologia , Córnea/fisiopatologia , Fenômenos Biomecânicos , Substância Própria/cirurgia , Estresse Mecânico , Cirurgia da Córnea a Laser/métodos , Simulação por Computador
9.
ACS Nano ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133543

RESUMO

Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.

10.
J Mech Behav Biomed Mater ; 153: 106472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432183

RESUMO

At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.


Assuntos
Colágeno , Fraturas Ósseas , Humanos , Colágeno/química , Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Minerais/metabolismo , Estresse Mecânico
11.
Carbohydr Polym ; 343: 122409, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174076

RESUMO

The study focuses on developing a bioactive shape memory sponge to address the urgent demand for short-term rapid hemostasis and long-term wound healing in noncompressible hemorrhage cases. A composite sponge was created by spontaneously generating pores and double cross-linking under mild conditions using biomimetic collagen fibril (BCF) and oxidized alginate (OA) as natural backbone, combined with an inert calcium source (Ca) from CaCO3-GDL slow gelation mechanism. The optimized BCF/OACa (5/5) sponge efficiently absorbed blood after compression and recovered to its original state within 11.2 ± 1.3 s, achieving physical hemostatic mechanism. The composite sponge accelerated physiological coagulation by promoting platelet adhesion and activation through BCF, as well as enhancing endogenous and exogenous hemostatic pathways by Ca2+. Compared to commercial PVA expanding hemostatic sponge, the composite sponge reduced bleeding volume and shortened hemostasis time in rat liver injury pick and perforation wound models. Additionally, it stimulated fibroblast migration and differentiation, thus promoting wound healing. It is biodegradable with low inflammatory response and promotes granulation tissue regeneration. In conclusion, this biocomposite sponge provides multiple hemostatic pathways and biochemical support for wound healing, is biologically safe and easy to fabricate, process and use, with significant potential for clinical translation and application.


Assuntos
Alginatos , Materiais Biomiméticos , Colágeno , Hemorragia , Hemostáticos , Cicatrização , Alginatos/química , Alginatos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Colágeno/química , Ratos , Hemorragia/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Masculino , Ratos Sprague-Dawley , Hemostasia/efeitos dos fármacos , Oxirredução , Adesividade Plaquetária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA