RESUMO
Contemporaneous Zika virus (ZIKV) strains can cause congenital Zika syndrome (CZS). Current ZIKV clinical laboratory testing strategies are limited and include IgM serology (which may wane 12 weeks after initial exposure) and nucleic acid testing (NAT) of maternal serum, urine, and placenta for (+) strand ZIKV RNA (which is often transient). The objectives of this study were to determine if use of additional molecular tools, such as quantitative PCR and microscopy, would add to the diagnostic value of current standard placental ZIKV testing in cases with maternal endemic exposure and indeterminate testing. ZIKV RNA was quantified from dissected sections of placental villi, chorioamnion sections, and full cross-sections of umbilical cord in all cases examined. Quantitation with high-resolution automated electrophoresis determined relative amounts of precisely verified ZIKV (74-nt amplicons). In order to localize and visualize stable and actively replicating placental ZIKV in situ, labeling of flaviviridae glycoprotein, RNA ISH against both (+) and (â») ZIKV-specific ssRNA strands, and independent histologic examination for significant pathologic changes were employed. We demonstrate that the use of these molecular tools added to the diagnostic value of placental ZIKV testing among suspected cases of congenital Zika syndrome with poorly ascribed maternal endemic exposure.
Assuntos
Placenta/patologia , Placenta/virologia , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Zika virus , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imuno-Histoquímica , Transmissão Vertical de Doenças Infecciosas , Imageamento por Ressonância Magnética , Microcefalia/diagnóstico , Microcefalia/etiologia , Fenótipo , Gravidez , Avaliação de Sintomas , Síndrome , Ultrassonografia Pré-Natal , Adulto Jovem , Infecção por Zika virus/transmissãoRESUMO
Background & Objective: Congenital brain malformations and neurodevelopmental disorders (NDDs) are common pediatric neurological disorders and result in chronic disability. With the expansion of genetic testing, new etiologies for NDDs are continually uncovered, with as many as one third attributable to single-gene pathogenic variants. While our ability to identify pathogenic variants has continually improved, we have little understanding of the underlying cellular pathophysiology in the nervous system that results from these variants. We therefore integrated phenotypic information from subjects with monogenic diagnoses with two large, single-nucleus RNA-sequencing (snRNAseq) datasets from human cortex across developmental stages in order to investigate cell-specific biases in gene expression associated with distinct neurodevelopmental phenotypes. Methods: Phenotypic data was gathered from 1) a single-institution cohort of 84 neonates with pathogenic single-gene variants referred to Duke Pediatric Genetics, and 2) a cohort of 4,238 patients with neurodevelopmental disorders and pathogenic single-gene variants enrolled in the Deciphering Developmental Disorders (DDD) study. Pathogenic variants were grouped into genesets by neurodevelopmental phenotype and geneset expression across cortical cell subtypes was compared within snRNAseq datasets from 86 human cortex samples spanning the 2nd trimester of gestation to adulthood. Results: We find that pathogenic variants associated with speech/cognitive delay or seizures involve genes that are more highly expressed in cortical excitatory neurons than variants in genes not associated with these phenotypes (Speech/cognitive: p=2.25×10-7; Seizures: p=7.97×10-12). A separate set of primarily rare variants associated with speech/cognitive delay or seizures, distinct from those with excitatory neuron expression biases, demonstrated expression biases in microglia. We also found that variants associated with speech/cognitive delay and an excitatory neuron expression bias could be further parsed by the presence or absence of comorbid seizures. Variants associated with speech/cognitive delay without seizures tended to involve calcium regulatory pathways and showed greater expression in extratelencephalic neurons, while those associated with speech/cognitive delay with seizures tended to involve synaptic regulatory machinery and an intratelencephalic neuron expression bias (ANOVA by geneset p<2×10-16). Conclusions: By combining extensive phenotype datasets from subjects with neurodevelopmental disorders with massive human cortical snRNAseq datasets across developmental stages, we identified cell-specific expression biases for genes in which pathogenic variants are associated with speech/cognitive delay and seizures. The involvement of genes with enriched expression in excitatory neurons or microglia highlights the unique role both cell types play in proper sculpting of the developing brain. Moreover, this information begins to shed light on distinct cortical cell types that are more likely to be impacted by pathogenic variants and that may mediate the symptomatology of resulting neurodevelopmental disorders.
RESUMO
Background and Objective: During embryonic development, the dysregulation of the proliferation and differentiation of neuronal progenitors triggers congenital brain malformations. These malformations are common causes of morbidity and mortality in patients younger than 2 years old. Animal models have provided considerable insights into the etiology of diseases that cause congenital brain malformations. However, the interspecies differences in brain structure limit the ability to transfer these insights directly to studies of humans. In recent years, brain organoids generated from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) using a 3-dimensional (3D) culture system have been used to resemble the structure and function of a developing human brain. Therefore, we aimed to summarize the different congenital brain malformations that have been modeled by organoids and discuss the ability of this model to reveal the cellular and molecular mechanisms of congenital brain malformations. Methods: A comprehensive search was performed using PubMed and Web of Science's Core Collection for literature published from July 1, 2000 to July 1, 2022. Keywords included terms related to brain organoids and congenital brain malformations, as well as names of individual malformations. Key Content and Findings: The self-assembled 3D aggregates have been used to recapitulate structural malformations of human brains, such as microcephaly, macrocephaly, lissencephaly (LIS), and periventricular nodular heterotopia (PH). The use of disease-specific brain organoids has revealed unprecedented details of mechanisms that cause congenital brain malformations. Conclusions: This review summarizes the establishment and development of brain organoid technologies and provides an overview of their applications in modeling congenital brain malformations. Although several hurdles still need to be overcome, using brain organoids has greatly expanded our ability to reveal the pathogenesis of congenital brain malformations. Compared with existing methods, the combination with cutting-edge technologies enables a more accurate diagnosis and development of increasingly personalized targeted therapy for patients with congenital brain diseases.
RESUMO
Congenital alterations in the levels of the transcription factor Forkhead box g1 (FOXG1) coding gene trigger "FOXG1 syndrome," a spectrum that recapitulates birth defects found in the "congenital Zika syndrome," such as microcephaly and other neurodevelopmental conditions. Here, we report that Zika virus (ZIKV) infection alters FOXG1 nuclear localization and causes its downregulation, thus impairing expression of genes involved in cell replication and apoptosis in several cell models, including human neural progenitor cells. Growth factors, such as EGF and FGF2, and Thr271 residue located in FOXG1 AKT domain, take part in the nuclear displacement and apoptosis protection, respectively. Finally, by progressive deletion of FOXG1 sequence, we identify the C-terminus and the residues 428-481 as critical domains. Collectively, our data suggest a causal mechanism by which ZIKV affects FOXG1, its target genes, cell cycle progression, and survival of human neural progenitors, thus contributing to microcephaly.
Assuntos
Microcefalia , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/genéticaRESUMO
Congenital brain malformations comprise a spectrum of disorders that result from a variety of causes, including genetic abnormalities, ischemia, infections, and toxic exposures. Although most cases are discovered in infancy or childhood, clinically occult abnormalities may prove to be confounding, especially if first encountered later in life on imaging examinations obtained for other indications or in the context of superimposed pathology. This review article provides an overview of congenital brain malformations because they may be encountered at all ages for general radiologists.
Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Adulto , Humanos , LactenteRESUMO
Intracranial abnormalities are commonly suspected findings on antenatal ultrasound that require evaluation by magnetic resonance imaging. This review depicts multiple abnormalities imaged as a means to guide clinicians in proper diagnosis.
RESUMO
Congenital brain malformations (CBMs) are a heterogeneous group characterised by abnormal structure of the developing brain. Their aetiology includes in-utero infections, teratogenicity and in a considerable group, genetic causes. Due to the high rate of consanguineous marriages and the possible high prevalence of prenatal infections in Sudan, CBMs are likely to be common. The main aim of this study was to review the clinical profile of children with CBMs attending two main tertiary paediatrics neurology outpatient clinics in Khartoum State, Sudan. Children under the age of 18 years who presented with developmental delay, seizures or abnormal head size were evaluated clinically and with neuroimaging for possible CBMs. Out of 2,114 patients seen within 6 months (September 2016-March 2017) at the Outpatient Departments, 105 patients (5%) were diagnosed with CBMs. Sixty patients (57.1%) had a single brain anomaly, 36 patients (34.1%) had two brain anomalies while nine patients (8.6%) had multiple brain anomalies. Collectively, cortical malformations either isolated or in combination with other anomalies were observed in 37 patients (35.1%), thus by representing the commonest CBMs. Community-based epidemiological studies are needed to ascertain CBMs prevalence, common causes and long-term outcomes.