Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.247
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(44): e2417543121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39441634

RESUMO

Meta-learning enables us to learn how to learn the same or similar tasks more efficiently. Decision-making literature theorizes that a prefrontal network, including the orbitofrontal and anterior cingulate cortices, underlies meta-learning of decision making by reinforcement learning. Recently, computationally similar meta-learning has been theorized and empirically demonstrated in motor adaptation. However, it remains unclear whether meta-learning of motor adaptation also relies on a prefrontal network. Considering hierarchical information flow from the prefrontal to motor cortices, this study explores whether meta-learning is processed in the dorsolateral prefrontal cortex (DLPFC) or in the dorsal premotor cortex (PMd), which is situated upstream of the primary motor cortex, but downstream of the DLPFC. Transcranial magnetic stimulation (TMS) was delivered to either PMd or DLPFC during a motor meta-learning task, in which human participants were trained to regulate the rate and retention of motor adaptation to maximize rewards. While motor adaptation itself was intact, TMS to PMd, but not DLPFC, attenuated meta-learning, impairing the ability to regulate motor adaptation to maximize rewards. Further analyses revealed that TMS to PMd attenuated meta-learning of memory retention. These results suggest that meta-learning of motor adaptation relies more on the premotor area than on a prefrontal network. Thus, while PMd is traditionally viewed as crucial for planning motor actions, this study suggests that PMd is also crucial for meta-learning of motor adaptation, processing goal-directed planning of how long motor memory should be retained to fit the long-term goal of motor adaptation.


Assuntos
Adaptação Fisiológica , Aprendizagem , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Córtex Motor/fisiologia , Masculino , Aprendizagem/fisiologia , Adaptação Fisiológica/fisiologia , Feminino , Adulto , Adulto Jovem , Córtex Pré-Frontal Dorsolateral/fisiologia , Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia
2.
J Neurosci ; 44(40)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39197939

RESUMO

Executive control of movement enables inhibiting impulsive responses critical for successful navigation of the environment. Circuits mediating stop commands involve prefrontal and basal ganglia structures with fMRI evidence demonstrating increased activity during response inhibition in the dorsolateral prefrontal cortex (dlPFC)-often ascribed to maintaining task attentional demands. Using direct intraoperative cortical recordings in male and female human subjects, we investigated oscillatory dynamics along the rostral-caudal axis of dlPFC during a modified Go/No-go task, probing components of both proactive and reactive motor control. We assessed whether cognitive control is topographically organized along this axis and observed that low-frequency power increased prominently in mid-rostral dlPFC when inhibiting and delaying responses. These findings provide evidence for a key role for mid-rostral dlPFC low-frequency oscillations in sculpting motor control.


Assuntos
Córtex Pré-Frontal Dorsolateral , Inibição Psicológica , Humanos , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto Jovem , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Pessoa de Meia-Idade , Função Executiva/fisiologia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiologia , Ondas Encefálicas/fisiologia
3.
J Neurosci ; 44(37)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39179384

RESUMO

For better decisions in social interactions, humans often must understand the thinking of others and predict their actions. Since such predictions are uncertain, multiple predictions may be necessary for better decision-making. However, the neural processes and computations underlying such social decision-making remain unclear. We investigated this issue by developing a behavioral paradigm and performing functional magnetic resonance imaging and computational modeling. In our task, female and male participants were required to predict others' choices in order to make their own value-based decisions, as the outcome depended on others' choices. Results showed, to make choices, the participants mostly relied on a value difference (primary) generated from the case where others would make a likely choice, but sometimes they additionally used another value difference (secondary) from the opposite case where others make an unlikely choice. We found that the activations in the posterior cingulate cortex (PCC) correlated with the primary difference while the activations in the right dorsolateral prefrontal cortex (rdlPFC) correlated with the secondary difference. Analysis of neural coupling and temporal dynamics suggested a three-step processing network, beginning with the left amygdala signals for predictions of others' choices. Modulated by these signals, the PCC and rdlPFC reflect the respective value differences for self-decisions. Finally, the medial prefrontal cortex integrated these decision signals for a final decision. Our findings elucidate the neural process of constructing value-based decisions by predicting others and illuminate their key variables with social modulations, providing insight into the differential functional roles of these brain regions in this process.


Assuntos
Encéfalo , Comportamento de Escolha , Tomada de Decisões , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Tomada de Decisões/fisiologia , Adulto , Adulto Jovem , Comportamento de Escolha/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
4.
Front Neuroendocrinol ; 72: 101115, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993020

RESUMO

Bipolar disorder (BD) is worldwide a prevalent mental illness and a leading risk factor for suicide. Over the past three decades, it has been discovered that sex differences exist throughout the entire panorama of BD, but the etiologic regions and mechanisms that generate such differences remain poorly characterized. Available evidence indicates that the dorsolateral prefrontal cortex (DLPFC), a critical region that controls higher-order cognitive processing and mood, exhibits biological disparities between male and female patients with psychiatric disorders, which are highly correlated with the co-occurrence of psychotic symptoms. This review addresses the sex differences in BD concerning epidemiology, cognitive impairments, clinical manifestations, neuroimaging, and laboratory abnormalities. It also provides strong evidence linking DLPFC to the etiopathogenesis of these sex differences. We emphasize the importance of identifying gene signatures using human brain transcriptomics, which can depict sexually different variations, explain sex-biased symptomatic features, and provide novel targets for sex-specific therapeutics.


Assuntos
Transtorno Bipolar , Humanos , Masculino , Feminino , Transtorno Bipolar/etiologia , Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal , Caracteres Sexuais , Encéfalo/patologia
5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642105

RESUMO

Stress has a major impact on our mental health. Nonetheless, it is still not fully understood how the human brain responds to ongoing stressful events. Here, we aimed to determine the cortical dynamics during the exposure to ecologically valid, standardized stressors. To this end, we conducted 3 experiments in which healthy participants underwent the Trier Social Stress Test (experiments 1 and 2) and the Socially Evaluated Cold Pressor Test (experiment 3) or a respective control manipulation, while we measured their cortical activity using functional near-infrared spectroscopy. Increases in salivary cortisol and subjective stress levels confirmed the successful stress induction in all experiments. Results of experiment 1 showed significantly increased cortical activity, in particular in the dorsolateral prefrontal cortex, during the exposure to the Trier Social Stress Test. Experiment 2 replicated this finding and showed further that this stress-related increase in dorsolateral prefrontal cortex activity was transient and limited to the period of the Trier Social Stress Test. Experiment 3 demonstrated the increased dorsolateral prefrontal cortex activity during the Socially Evaluated Cold Pressor Test, suggesting that this increase is generalizable and not specific to the Trier Social Stress Test. Together, these data show consistently that dorsolateral prefrontal cortex activity is not reduced, as commonly assumed, but increased under stress, which may promote coping with the ongoing stressor.


Assuntos
Encéfalo , Córtex Pré-Frontal Dorsolateral , Humanos , Mapeamento Encefálico/métodos , Testes Psicológicos , Córtex Pré-Frontal , Estresse Psicológico , Hidrocortisona
6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38204301

RESUMO

Major depressive disorder affects over 300 million people globally, with approximately 30% experiencing treatment-resistant depression (TRD). Given that impaired neuroplasticity underlies depression, the present study focused on neuroplasticity in the dorsolateral prefrontal cortex (DLPFC). Here, we aimed to investigate the differences in neuroplasticity between 60 individuals with TRD and 30 age- and sex-matched healthy controls (HCs). To induce neuroplasticity, participants underwent a paired associative stimulation (PAS) paradigm involving peripheral median nerve stimulation and transcranial magnetic stimulation (TMS) targeting the left DLPFC. Neuroplasticity was assessed by using measurements combining TMS with EEG before and after PAS. Both groups exhibited significant increases in the early component of TMS-evoked potentials (TEP) after PAS (P < 0.05, paired t-tests with the bootstrapping method). However, the HC group demonstrated a greater increase in TEPs than the TRD group (P = 0.045, paired t-tests). Additionally, event-related spectral perturbation analysis highlighted that the gamma power significantly increased after PAS in the HC group, whereas it was decreased in the TRD group (P < 0.05, paired t-tests with the bootstrapping method). This gamma power modulation revealed a significant group difference (P = 0.006, paired t-tests), indicating an inverse relationship for gamma power modulation. Our findings underscore the impaired neuroplasticity of the DLPFC in individuals with TRD.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal Dorsolateral , Eletroencefalografia/métodos , Depressão , Córtex Pré-Frontal/fisiologia , Plasticidade Neuronal/fisiologia
7.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904080

RESUMO

Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed: 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.


Assuntos
Cognição , Neurorretroalimentação , Desempenho Psicomotor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Adulto Jovem , Método Simples-Cego , Cognição/fisiologia , Adulto , Desempenho Psicomotor/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologia
8.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517175

RESUMO

Intermittent theta-burst stimulation (iTBS) is emerging as a noninvasive therapeutic strategy for Alzheimer's disease (AD). Recent advances highlighted a new accelerated iTBS (aiTBS) protocol, consisting of multiple sessions per day and higher overall pulse doses, in brain modulation. To examine the possibility of applying the aiTBS in treating AD patients, we enrolled 45 patients in AD at early clinical stages, and they were randomly assigned to either receive real or sham aiTBS. Neuropsychological scores were evaluated before and after treatment. Moreover, we detected cortical excitability and oscillatory activity changes in AD, by the single-pulse TMS in combination with EEG (TMS-EEG). Real stimulation showed markedly better performances in the group average of Auditory Verbal Learning Test scores compared to baseline. TMS-EEG revealed that aiTBS has reinforced this memory-related cortical mechanism by increasing cortical excitability and beta oscillatory activity underlying TMS target. We also found an enhancement of local natural frequency after aiTBS treatment. The novel findings implicated that high-dose aiTBS targeting left DLPFC is rapid-acting, safe, and tolerable in AD patients. Furthermore, TMS-related increase of specific neural oscillation elucidates the mechanisms of the AD cognitive impairment ameliorated by aiTBS.


Assuntos
Doença de Alzheimer , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/terapia , Córtex Pré-Frontal/fisiologia , Encéfalo , Córtex Pré-Frontal Dorsolateral
9.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300216

RESUMO

The dorsolateral prefrontal cortex (DLPFC) assumes a central role in cognitive and behavioral control, emerging as a crucial target region for interventions in autism spectrum disorder neuroregulation. Consequently, we endeavor to unravel the functional subregions within the DLPFC to shed light on the intricate functions of the brain. We introduce a distance-constrained spectral clustering (SC-DW) methodology that leverages functional connection to identify distinctive functional subregions within the DLPFC. Furthermore, we verify the relationship between the functional characteristics of these subregions and their clinical implications. Our methodology begins with principal component analysis to extract the salient features. Subsequently, we construct an adjacency matrix, which is constrained by the spatial properties of the brain, by linearly combining the distance matrix and a similarity matrix. The quality of spectral clustering is further optimized through multiple cluster evaluation coefficient. The results from SC-DW revealed four uniform and contiguous subregions within the bilateral DLPFC. Notably, we observe a substantial positive correlation between the functional characteristics of the third and fourth subregions in the left DLPFC with clinical manifestations. These findings underscore the unique insights offered by our proposed methodology in the realms of brain subregion delineation and therapeutic targeting.


Assuntos
Transtorno do Espectro Autista , Córtex Pré-Frontal Dorsolateral , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Análise por Conglomerados
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596882

RESUMO

We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Córtex Pré-Frontal Dorsolateral , Reprodutibilidade dos Testes , Córtex Pré-Frontal/fisiologia , Potenciais Evocados/fisiologia
11.
J Neurosci ; 43(19): 3582-3597, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037607

RESUMO

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses. Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited considerable variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional differences between the two regions. We used these molecular definitions to determine which cell classes might be enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcriptional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental illness.SIGNIFICANCE STATEMENT Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizophrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychiatric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molecular pathways involved in psychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Córtex Pré-Frontal Dorsolateral , Humanos , Masculino , Transtorno Depressivo Maior/metabolismo , Giro do Cíngulo/metabolismo , Córtex Pré-Frontal/fisiologia , Estudo de Associação Genômica Ampla , Núcleo Solitário/metabolismo
12.
Neuroimage ; 298: 120788, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147295

RESUMO

The accomplishment of interpersonal sensorimotor synchronization is a challenging endeavor because it requires the achievement of a balance between accurate temporal control within individuals and smooth communication between them. This raises a critical question: How does the brain comprehend and process the perceptual information of others to guarantee accurate temporal control of action goals in a social context? A joint synchronization - continuation tapping task was conducted together with varying relative phases (0°/180°) and intervals of tempos (400 ms/800 ms/1600 ms) while neural data was collected using fNIRS (functional near-infrared spectroscopy). Individuals showed better behavioral performance and greater interpersonal brain synchronization(IBS) in the left dorsolateral prefrontal cortex at alternated condition (180° relative phase) compared to symmetric condition (0° relative phase), suggesting that the individual can better maintain behavioral performance and show improved IBS when the partner taps between the individual's gaps. Meanwhile, in most levels of alternated condition, IBS is inversely proportional to interference from partner, implying the counteraction of IBS against interference from others. In addition, when the interval of tempo was 1600 ms, behavioral performance showed a sharp decline, accompanied by a decrease in IBS, reflecting that IBS in SMS reflects effective information exchange between individuals rather than ineffective interference with each other. This study provides insight into the mechanisms underlying sensorimotor synchronization between individuals.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Desempenho Psicomotor/fisiologia , Relações Interpessoais , Interação Social , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
13.
Neuroimage ; 290: 120575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479461

RESUMO

Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Treino Cognitivo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
14.
Neuroimage ; 301: 120880, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362506

RESUMO

OBJECTIVE: This study aims to explores the physiological and psychological mechanisms of exercise-induced hypoalgesia (EIH) by combining the behavioral results with neuroimaging data on changes oxy-hemoglobin (HbO) in prefrontal cortex (PFC). METHODS: A total of 97 healthy participants were recruited and randomly divided into three groups: a single dance movement therapy (DMT) group, a double DMT group, and control group. Evaluation indicators included the pressure pain threshold (PPT) test, the color-word stroop task (CWST) for wearing functional near-infrared spectroscopy (fNIRS), and the self-assessment manikin (SAM). The testing time is before intervention, after intervention, and one hour of sit rest after intervention. RESULTS: 1) Repeated measures ANOVA revealed that, there is a time * group effect on the PPT values of the three groups of participants at three time points. After 30 min of acute dance intervention, an increase in the PPT values of 10 test points occurred in the entire body of the participants in the experimental group with a significant difference than the control group. 2) In terms of fNIRS signals, bilateral DLPFC and left VLPFC channels were significantly activated in the experimental group. 3) DMT significantly awakened participants and brought about pleasant emotions, but cognitive improvement was insignificant. 4) Mediation effect analysis found that the change in HbO concentration in DLPFC may be a mediator in predicting the degree of improvement in pressure pain threshold through dance intervention (total effect ß = 0.7140). CONCLUSION: In healthy adults, DMT can produce a diffuse EIH effect on improving pressure pain threshold, emotional experience but only showing an improvement trend in cognitive performance. Dance intervention significantly activates the left ventrolateral and bilateral dorsolateral prefrontal cortex. This study explores the central nervous system mechanism of EIH from a physiological and psychological perspective.


Assuntos
Dançaterapia , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Dançaterapia/métodos , Limiar da Dor/fisiologia
15.
Neuroimage ; 297: 120714, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950665

RESUMO

Previous neuroimaging studies have reported dual-task interference (DTi) and deterioration of task performance in a cognitive-motor dual task (DT) compared to that in a single task (ST). Greater frontoparietal activity is a neural signature of DTi; nonetheless, the underlying mechanism of cortical network in DTi still remains unclear. This study aimed to investigate the regional brain activity and neural network changes during DTi induced by highly demanding cognitive-motor DT. Thirty-four right-handed healthy young adults performed the spiral-drawing task. They underwent a paced auditory serial addition test (PASAT) simultaneously or independently while their cortical activity was measured using functional near-infrared spectroscopy. Motor performance was determined using the balanced integration score (BIS), a balanced index of drawing speed and precision. The cognitive task of the PASAT was administered with two difficulty levels defined by 1 s (PASAT-1 s) and 2 s (PASAT-2 s) intervals, allowing for the serial addition of numbers. Cognitive performance was determined using the percentage of correct responses. These motor and cognitive performances were significantly reduced during DT, which combined a drawing and a cognitive task at either difficulty level, compared to those in the corresponding ST conditions. The DT conditions were also characterized by significantly increased activity in the right dorsolateral prefrontal cortex (DLPFC) compared to that in the ST conditions. Multivariate Granger causality (GC) analysis of cortical activity in the selected frontoparietal regions of interest further revealed selective top-down causal connectivity from the right DLPFC to the right inferior parietal cortex during DTs. Furthermore, changes in the frontoparietal GC connectivity strength between the PASAT-2 s DT and ST conditions significantly correlated negatively with changes in the percentage of correct responses. Therefore, DTi can occur even in cognitively proficient young adults, and the right DLPFC and frontoparietal network being crucial neural mechanisms underlying DTi. These findings provide new insights into DTi and its underlying neural mechanisms and have implications for the clinical utility of cognitive-motor DTs applied to clinical populations with cognitive decline, such as those with psychiatric and brain disorders.


Assuntos
Cognição , Rede Nervosa , Desempenho Psicomotor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Adulto Jovem , Adulto , Desempenho Psicomotor/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
16.
Eur J Neurosci ; 59(8): 2046-2058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270331

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal Dorsolateral , Córtex Motor/fisiologia , Aprendizagem/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologia
17.
Cogn Affect Behav Neurosci ; 24(1): 19-41, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38212486

RESUMO

The dorsolateral prefrontal cortex (DLPFC) has been widely recognized as a crucial brain "control area." Recently, its causal role in promoting deliberate decision-making through self-control and the asymmetric performance of the left and right DLPFC in control functions have attracted the interest of many researchers. This study was designed to investigate the role of DLPFC in decision-making behaviors and lateralization of its control function by systematically examining the effects of noninvasive brain stimulation (NIBS) over the DLPFC on intertemporal choice, risk decision-making, and social fairness-related decision-making tasks. Literature searches were implemented at PubMed, Embase, Cochrane, Web of Science, Wanfang Data, China Science and Technology Journal Database, and China National Knowledge Infrastructure until May 10, 2022. Meta-analytic results for included studies were estimated by random-effect models. A total of 33 eligible studies were identified, yielding 130 effect sizes. Our results indicated that compared to sham group, excitatory NIBS over the left DLPFC reduced delay discounting rate (standardized mean differences, SMD = -0.51; 95% confidence interval, 95% CI: [-0.81, -0.21]) and risk-taking performance (SMD = -0.39, 95% CI [-0.68, -0.10]), and inhibitory NIBS over the right DLPFC increased self-interested choice of unfair offers (SMD = 0.50, 95% CI [0.04, 0.97]). Finding of current work indicated that neural excitement of the DLPFC activation improve individuals' self-control during decision-makings, whereas neural inhibition results in impaired control. In addition, our analyses furnish causal evidence for the presence of functional lateralization in the left and right DLPFC in monetary impulsive decision-making and social decision-making, respectively.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Transcraniana por Corrente Contínua , Humanos , Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Impulsivo , Assunção de Riscos , Estimulação Transcraniana por Corrente Contínua/métodos
18.
Cogn Affect Behav Neurosci ; 24(5): 881-893, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38955871

RESUMO

Previous research has indicated that the left dorsolateral prefrontal cortex (DLPFC) exerts an influence on attentional bias toward visual emotional information. However, it remains unclear whether the left DLPFC also play an important role in attentional bias toward natural emotional sounds. The current research employed the emotional spatial cueing paradigm, incorporating natural emotional sounds of considerable ecological validity as auditory cues. Additionally, high-definition transcranial direct current stimulation (HD-tDCS) was utilized to examine the impact of left dorsolateral prefrontal cortex (DLPFC) on attentional bias and its subcomponents, namely attentional engagement and attentional disengagement. The results showed that (1) compared to sham condition, anodal HD-tDCS over the left DLPFC reduced the attentional bias toward positive and negative sounds; (2) anodal HD-tDCS over the left DLPFC reduced the attentional engagement toward positive and negative sounds, whereas it did not affect attentional disengagement away from natural emotional sounds. Taken together, the present study has shown that left DLPFC, which was closely related with the top-down attention regulatory function, plays an important role in auditory emotional attentional bias.


Assuntos
Viés de Atenção , Percepção Auditiva , Córtex Pré-Frontal Dorsolateral , Emoções , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Emoções/fisiologia , Adulto Jovem , Viés de Atenção/fisiologia , Adulto , Percepção Auditiva/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Atenção/fisiologia , Estimulação Acústica , Sinais (Psicologia) , Córtex Pré-Frontal/fisiologia
19.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35380614

RESUMO

High-dimensional, localized ribonucleic acid (RNA) sequencing is now possible owing to recent developments in spatial transcriptomics (ST). ST is based on highly multiplexed sequence analysis and uses barcodes to match the sequenced reads to their respective tissue locations. ST expression data suffer from high noise and dropout events; however, smoothing techniques have the promise to improve the data interpretability prior to performing downstream analyses. Single-cell RNA sequencing (scRNA-seq) data similarly suffer from these limitations, and smoothing methods developed for scRNA-seq can only utilize associations in transcriptome space (also known as one-factor smoothing methods). Since they do not account for spatial relationships, these one-factor smoothing methods cannot take full advantage of ST data. In this study, we present a novel two-factor smoothing technique, spatial and pattern combined smoothing (SPCS), that employs the k-nearest neighbor (kNN) technique to utilize information from transcriptome and spatial relationships. By performing SPCS on multiple ST slides from pancreatic ductal adenocarcinoma (PDAC), dorsolateral prefrontal cortex (DLPFC) and simulated high-grade serous ovarian cancer (HGSOC) datasets, smoothed ST slides have better separability, partition accuracy and biological interpretability than the ones smoothed by preexisting one-factor methods. Source code of SPCS is provided in Github (https://github.com/Usos/SPCS).


Assuntos
Análise de Célula Única , Transcriptoma , Perfilação da Expressão Gênica/métodos , RNA , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software
20.
Int J Neuropsychopharmacol ; 27(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39120945

RESUMO

BACKGROUND: The group-I metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in methamphetamine exposure in animals and in human cognition. Because people with methamphetamine use disorder (MUD) exhibit cognitive deficits, we evaluated mGlu5 in people with MUD and controls and tested its association with cognitive performance. METHODS: Positron emission tomography was performed to measure the total VT of [18F]FPEB, a radiotracer for mGlu5, in brains of participants with MUD (abstinent from methamphetamine for at least 2 weeks, N = 14) and a control group (N = 14). Drug use history questionnaires and tests of verbal learning, spatial working memory, and executive function were administered. Associations of VT with methamphetamine use, tobacco use, and cognitive performance were tested. RESULTS: MUD participants did not differ from controls in global or regional VT, and measures of methamphetamine use were not correlated with VT. VT was significantly higher globally in nonsmoking vs smoking participants (main effect, P = .0041). MUD participants showed nonsignificant weakness on the Rey Auditory Verbal Learning Task and the Stroop test vs controls (P = .08 and P = .13, respectively) with moderate to large effect sizes, and significantly underperformed controls on the Spatial Capacity Delayed Response Test (P = .015). Across groups, Rey Auditory Verbal Learning Task performance correlated with VT in the dorsolateral prefrontal cortex and superior frontal gyrus. CONCLUSION: Abstinent MUD patients show no evidence of mGlu5 downregulation in brain, but association of VT in dorsolateral prefrontal cortex with verbal learning suggests that medications that target mGlu5 may improve cognitive performance.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Encéfalo , Fumar Cigarros , Metanfetamina , Tomografia por Emissão de Pósitrons , Receptor de Glutamato Metabotrópico 5 , Adulto , Feminino , Humanos , Masculino , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico por imagem , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Fumar Cigarros/metabolismo , Cognição/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Metanfetamina/administração & dosagem , Metanfetamina/farmacologia , Testes Neuropsicológicos , Receptor de Glutamato Metabotrópico 5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA