Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 23(3): e202100596, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859954

RESUMO

AICA (5'-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Ribonucleotídeos/biossíntese , Acinetobacter/enzimologia , Aminoimidazol Carboxamida/química , Bactérias/enzimologia , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Polifosfatos/química , Ribonucleotídeos/química , Temperatura
2.
Biomolecules ; 11(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668847

RESUMO

Cladribine triphosphate is the active compound of the anti-cancer and multiple sclerosis drug Mavenclad (cladribine). Biosynthesis of such non-natural deoxyribonucleotides is challenging but important in order to study the pharmaceutical modes of action. In this study, we developed a novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate, starting with the nucleobase 2Cl-adenine and the generic co-substrate phosphoribosyl pyrophosphate. The cascade is comprised of the three enzymes, namely, adenine phosphoribosyltransferase (APT), polyphosphate kinase (PPK), and ribonucleotide reductase (RNR). APT catalyzes the binding of the nucleobase to the ribose moiety, followed by two consecutive phosphorylation reactions by PPK. The formed nucleoside triphosphate is reduced to the final product 2Cl-deoxyadenonsine triphosphate (cladribine triphosphate) by the RNR. The cascade is feasible, showing comparative product concentrations and yields to existing enzyme cascades for nucleotide biosynthesis. While this study is limited to the biosynthesis of cladribine triphosphate, the design of the cascade offers the potential to extend its application to other important deoxyribonucleotides.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Cladribina/análogos & derivados , Cladribina/metabolismo , Humanos , Nucleotídeos/metabolismo
3.
Acta Naturae ; 8(4): 82-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28050269

RESUMO

We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D-pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp. 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D-pentoses into 5-phosphates that were further converted into 5-phospho-α-D-pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D-ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA