Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.657
Filtrar
1.
Genes Dev ; 34(1-2): 37-52, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831628

RESUMO

In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Comportamento Alimentar/fisiologia , Animais , Encéfalo/fisiologia , Proteínas de Ligação a DNA/metabolismo , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Drosophila/enzimologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Levodopa/farmacologia , Monoiodotirosina/farmacologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Regulação para Cima
2.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012987

RESUMO

Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Dengue/virologia , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Comportamento Animal/fisiologia , Análise Multivariada
4.
Proc Natl Acad Sci U S A ; 119(43): e2211688119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252036

RESUMO

The nucleus accumbens (NAc) is a canonical reward center that regulates feeding and drinking but it is not known whether these behaviors are mediated by same or different neurons. We employed two-photon calcium imaging in awake, behaving mice and found that during the appetitive phase, both hunger and thirst are sensed by a nearly identical population of individual D1 and D2 neurons in the NAc that respond monophasically to food cues in fasted animals and water cues in dehydrated animals. During the consummatory phase, we identified three distinct neuronal clusters that are temporally correlated with action initiation, consumption, and cessation shared by feeding and drinking. These dynamic clusters also show a nearly complete overlap of individual D1 neurons and extensive overlap among D2 neurons. Modulating D1 and D2 neural activities revealed analogous effects on feeding versus drinking behaviors. In aggregate, these data show that a highly overlapping set of D1 and D2 neurons in NAc detect food and water reward and elicit concordant responses to hunger and thirst. These studies establish a general role of this mesolimbic pathway in mediating instinctive behaviors by controlling motivation-associated variables rather than conferring behavioral specificity.


Assuntos
Fome , Sede , Animais , Cálcio/metabolismo , Camundongos , Núcleo Accumbens/fisiologia , Recompensa , Água/metabolismo
5.
Annu Rev Physiol ; 83: 279-301, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33158377

RESUMO

Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.


Assuntos
Tecido Adiposo Marrom/fisiologia , Hipotálamo/fisiologia , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Humanos , Neurônios/fisiologia , Obesidade/fisiopatologia
6.
J Neurosci ; 43(7): 1089-1110, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36599680

RESUMO

Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Masculino , Animais , Feminino , Neuropeptídeo Y/metabolismo , Peixe-Zebra/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Glutamatos
7.
J Neurosci ; 43(36): 6280-6296, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37591737

RESUMO

The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.


Assuntos
Melanocortinas , Pró-Opiomelanocortina , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti , Ansiedade , Homeostase , Receptor Tipo 3 de Melanocortina , Tálamo
8.
Anim Cogn ; 27(1): 8, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429588

RESUMO

Predation risk may affect the foraging behavior of birds. However, there has been little research on the ability of domestic birds to perceive predation risk and thus adjust their feeding behavior. In this study, we tested whether domestic budgerigars (Melopsittacus undulatus) perceived predation risk after the presentation of specimens and sounds of sparrowhawks (Accipiter nisus), domestic cats (Felis catus), and humans, and whether this in turn influenced their feeding behavior. When exposed to visual or acoustic stimuli, budgerigars showed significantly longer latency to feed under sparrowhawk, domestic cat, and human treatments than with controls. Budgerigars responded more strongly to acoustic stimuli than visual stimuli, and they showed the longest latency to feed and the least number of feeding times in response to sparrowhawk calls. Moreover, budgerigars showed shorter latency to feed and greater numbers of feeding times in response to human voices than to sparrowhawk or domestic cat calls. Our results suggest that domestic budgerigars may identify predation risk through visual or acoustic signals and adjust their feeding behavior accordingly.


Assuntos
Percepção Auditiva , Melopsittacus , Humanos , Animais , Gatos , Percepção Auditiva/fisiologia , Melopsittacus/fisiologia , Comportamento Predatório , Acústica , Som
9.
Prostaglandins Other Lipid Mediat ; : 106869, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977258

RESUMO

Dysregulation of energy balance leading to obesity is a significant risk factor for cardiometabolic diseases such as diabetes, non-alcoholic fatty liver disease and atherosclerosis. In rodents and several other vertebrates, feeding has been shown to induce a rapid rise in the intestinal levels of N-acyl-ethanolamines (NAEs) and the chronic consumption of a high fat diet abolishes this rise. Administering NAEs to rodents consuming a high fat diet reduces their adiposity, in part by reducing food intake and enhancing fat oxidation, so that feeding-induced intestinal NAE biosynthesis appears to be critical to appropriate regulation of energy balance. However, the contribution of feeding-induced intestinal NAE biosynthesis to appropriate energy balance remains poorly understood in part because there are multiple enzymes that can contribute to NAE biosynthesis and the specific enzyme(s) that are responsible for feeding-induced intestinal NAE biosynthesis have not been identified. The rate-limiting step in the intestinal biosynthesis of NAEs is formation of their immediate precursors, the N-acyl-phosphatidylethanolamines (NAPEs), by phosphatidylethanolamine N-acyltransferases (NATs). At least six NATs are found in humans and multiple homologs of these NATs are found in most vertebrate species. In recent years, the fecundity and small size of zebrafish (Danio rerio), as well as their similarities in feeding behavior and energy balance regulation with mammals, have led to their use to model key features of cardiometabolic disease. We therefore searched the Danio rerio genome to identify all NAT homologs and found two additional NAT homologs besides the previously reported plaat1, rarres3, and rarres3l, and used CRISPR/cas9 to delete these two NAT homologs (plaat1l1 and plaat1l2). While wild-type fish markedly increased their intestinal NAPE levels in response to a meal after fasting, this response was completely ablated in plaat1l1-/-fish. Furthermore, plaat1l1-/- fish fed a standard flake diet had increased weight gain and glucose intolerance compared to wild-type fish. The results support a critical role for feeding-induced NAPE and NAE biosynthesis in regulating energy balance and suggest that restoring this response in obese animals could potentially be used to treat obesity and cardiometabolic disease.

10.
Nutr Neurosci ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648081

RESUMO

OBJECTIVES: Although an increasing number of studies show that time-restricted feeding may improve metabolic health, studies examining the behavioral effects of this eating pattern are limited. This study examined the effect of time-restricted feeding on impulsivity in adults. METHODS: Thirty adults aged 25-41 years participated in this randomized controlled trial. The intervention group followed time-restricted feeding for 4 weeks and there was no energy restriction in the intervention group (n = 15) or control group (n = 15). Impulsivity was assessed before and after the intervention with the Barratt Impulsiveness Scale and the Go/NoGo task. RESULTS: The compliance rate (the percentage of days when participants had a feeding time of ≤ 8 hours/day) of the intervention group to the time-restricted feeding pattern was 92.38 ± 4.24%. The Barratt Impulsiveness Scale-11 total score of the intervention group increased from 55.53 ± 6.37 to 59.47 ± 7.67 (p = 0.02). During the Go/NoGo task, an indicator of inhibitory control, the reaction time to food and non-food stimuli was significantly shortened in the intervention group (respectively; p = 0.009, p = 0.01). In the control group, no significant change was detected in impulsivity determined by the BIS-11 or Go/NoGo task. DISCUSSION: This study showed that although time-restricted feeding may reduce body weight, it can lead to increased impulsivity and impaired inhibitory control.Trial registration: ClinicalTrials.gov identifier: NCT04960969.

11.
Phytopathology ; 114(6): 1401-1410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148161

RESUMO

Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.


Assuntos
Oryza , Doenças das Plantas , Interferência de RNA , Serotonina , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Serotonina/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Oryza/parasitologia , Oryza/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Interações Hospedeiro-Parasita , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Raízes de Plantas/parasitologia , Fluoxetina/farmacologia , Transdução de Sinais , Comportamento Alimentar/efeitos dos fármacos
12.
J Dairy Sci ; 107(4): 2465-2482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37949406

RESUMO

The objective of this study was to determine the effect of individual cow personality traits on feeding behavior and production under low levels of feeding competition, and to determine whether personality traits influence how feeding behavior changes in response to greater feeding competition. Forty-two Holstein cows were assigned to 1 automated feed bin per cow (low competition condition) from 15 to 28 d in milk (DIM; period 1, P1), and 2 feed bins per 3 cows (higher competition condition) from 63 to 76 DIM (period 2, P2). A total mixed ration (TMR) was fed into the automated feed bins which recorded each feed bin visit time, duration, and intake. Cow personality traits were assessed at 21 DIM during P1 and at 70 DIM during P2 using a combined arena test, measuring behavioral responses to a novel environment, novel object, and novel human. Principal components analysis of behaviors observed during the P1 combined arena test revealed 1 factor (interpreted as active-explorative) from the novel environment test explaining 51% of the variance, and 3 factors (interpreted as fearfulness, active-explorative, and sociability toward conspecifics) from each of the novel object (76% cumulative variance) and human (75% cumulative variance) tests. The principal components analysis of behaviors observed during the P2 combined arena test revealed 2 factors jointly from the environment, object, and human tests (interpreted as fearfulness and active-explorative) that together explained 68% of the variance. Fearfulness and active-explorative trait scores were correlated across P1 and P2, indicating stability of personality over a challenging period and advancing DIM. In P2 when competition for feed was increased at greater stage of lactation, the more active-explorative cows appeared to make few alterations to their feeding behavior, yet still maintained their milk yield, compared with lower competition in P1. In contrast, cows who were more fearful increased their feed bin visits from P1 to P2, and less fearful cows increased their eating rate, without increased milk production, despite advanced lactation. Overall, the results indicate that cows of different personalities adopt different feeding strategies in response to a change in their environment, and may benefit from tailored management during challenging periods.


Assuntos
Dieta , Leite , Feminino , Humanos , Bovinos , Animais , Dieta/veterinária , Ração Animal/análise , Comportamento Alimentar/fisiologia , Lactação/fisiologia , Personalidade
13.
J Dairy Sci ; 107(7): 4833-4843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395393

RESUMO

Automated milk feeders (AMF) allow farmers to raise calves in groups while generating individual records on milk consumption, drinking speed, and frequency of visits. Calves raised in groups benefit from social interaction, which facilitates learning and adapting to novelty. However, calves in large groups (>12 calves/feeder) experience a higher risk of disease transmission and competition than those housed individually or in smaller groups. Therefore, if group size, grouping strategy, and disease detection are not optimal, the health and performance of calves can be compromised. The objectives of this narrative literature review, from publications available as of February 2023, are to (1) describe the use of AMF in group housing systems for calves and the associated feeding behavior variables they automatically collect, (2) linking feeding behavior collected from AMF to disease risk in calves, (3) describe research on social behavior in AMF systems, and (4) introduce social networks as a promising tool for the study of social behavior and disease transmission in group-housed AMF-fed calves. Existing research suggests that feeding behavior measures from AMF can assist in detecting bovine respiratory disease and enteric disease, which are common causes of morbidity and mortality for preweaning dairy heifers. Automated milk feeder records show reduced milk intake, drinking speed, or frequency of visits when calves are sick. However, discrepancies exist among published research about the sensitivity of feeding behavior measures as indicators of sickness, likely due to differences in feeding plans and disease-detection protocols. Therefore, considering the influence of milk allowance, group density, and individual variation on the analysis of AMF data is essential to derive meaningful information used to inform management decisions. Research using dynamic social networks derived from precision data show potential for the use of social network analysis to understand disease transmission and the effect of disease on social behavior of group-housed calves.


Assuntos
Comportamento Alimentar , Leite , Animais , Bovinos , Feminino , Abrigo para Animais , Indústria de Laticínios/métodos , Comportamento Social
14.
Dev Psychobiol ; 66(2): e22459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372503

RESUMO

Poor fetal growth affects eating behavior and the mesocorticolimbic system; however, its influence on the hippocampus has been less explored. Brain insulin sensitivity has been linked to developmental plasticity in response to fetal adversity and to cognitive performance following high-fat diet intake. We investigated whether poor fetal growth and exposure to chronic hyperpalatable food in adulthood could influence the recognition of environmental and food cues, eating behavior patterns, and hippocampal insulin signaling. At 60 days of life, we assigned male offspring from a prenatal animal model of 50% food restriction (FR) to receive either a high-fat and -sugar (HFS) diet or standard chow (CON) diet. Behavioral tests were conducted at 140 days, then tissues were collected. HFS groups showed a diminished hippocampal pAkt/Akt ratio. FR-CON and FR-HFS groups had higher levels of suppressor of cytokine signaling 3, compared to control groups. FR groups showed increased exploration of a novel hyperpalatable food, independent of their diet, and HFS groups exhibited overall lower entropy (less random, more predictable eating behavior) when the environment changed. Poor fetal growth and chronic HFS diet in adulthood altered hippocampal insulin signaling and eating patterns, diminishing the flexibility associated with eating behavior in response to extrinsic changes in food availability in the environment.


Assuntos
Comportamento Alimentar , Retardo do Crescimento Fetal , Gravidez , Feminino , Humanos , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Hipocampo , Dieta Hiperlipídica , Insulina , Desenvolvimento Fetal
15.
Ecotoxicol Environ Saf ; 272: 116074, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350214

RESUMO

The effect of underwater noise environment generated by equipment in industrial recirculating aquaculture systems (RAS) on fish is evident. However, different equipment generate noise in various frequency ranges. Understanding the effects of different frequency ranges noise on cultured species is important for optimizing the underwater acoustic environment in RAS. Given this, the effects of underwater noise across various frequency bands in RAS on the growth, physiology, and collective behavior of juvenile largemouth bass (Micropterus salmoides) were comprehensively evaluated here. In this study, three control groups were established: low-frequency noise group (80-1000 Hz, 117 dB re 1µPa RMS), high-frequency noise group (1-19 kHz, 117 dB re 1µPa RMS), and ambient group. During a 30-day experiment, it was found that: 1) industrial RAS noise with different frequency bands all had a certain inhibitory effect on the growth of fish, which the weight gain rate and product of length and depth of caudal peduncle in the ambient group were significantly higher than those of the two noise groups, with the low-frequency noise group showing significantly lower values than the high-frequency noise group; 2) industrial RAS noise had a certain degree of adverse effect on the digestive ability of fish, with the low-frequency noise group being more affected; 3) industrial RAS noise affected the collective feeding behavior of fish, with the collective feeding signal propagation efficiency and feeding intensity of the noise groups being significantly lower than those of the ambient group, and the high-frequency noise group performing better than the low-frequency noise group as a whole therein. From the above, the underwater noise across different frequency bands generated by equipment operation in industrial RAS both had an impact on juvenile largemouth bass, with the low-frequency noise group being more severely affected.


Assuntos
Bass , Animais , Bass/fisiologia , Aquicultura
16.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554056

RESUMO

Aster leafhopper (Hemiptera: Cicadellidae: Macrosteles quadrilineatus Forbes) is a polyphagous insect species that migrates into the upper Midwest of the United States and the Western Canadian Prairies. Populations of this insect are associated with the transmission of a plant pathogen (Candidatus Phytoplasma asteris, 16SrI) to several annual crops and perennial plant species. Previous studies suggest that aster leafhoppers can sometimes prefer less suitable hosts for their development and survival, yet it is unclear if this lower performance on certain plant species is associated with reduced or impaired probing behaviors due to characteristics of the plants. To characterize the probing behaviors of aster leafhoppers, direct current electropenetrography recordings of male and female adults on barley (Polaes: Poaceae: Hordeum vulgare L.) were combined with plant histology, allowing the identification of nine waveforms and their proposed biological meanings. For each waveform, the number of waveform events per insect (NWEI), the waveform duration per insect (WDI), the waveform duration per event per insect (WDEI), and the percentage of recording time were calculated and statistically compared between sexes. Male and female aster leafhoppers exhibited similar behavioral responses for most of these variables, except for the NWEI for waveforms associated with nonprobing activities and the pathway phase. In these cases, male aster leafhoppers exhibited a higher number of events than females. Comparison of the proposed waveforms in this study with previous work on other hemipteran species provided additional support to the interpretation of the biological activities associated with each waveform.


Assuntos
Hemípteros , Hordeum , Phytoplasma , Feminino , Animais , Hemípteros/fisiologia , Doenças das Plantas , Canadá , Phytoplasma/fisiologia
17.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942050

RESUMO

The electrical penetration graph (EPG) technique is the most powerful tool for studying the feeding behavior of pierce-sucking insects. However, calculating EPG variables is often very time-consuming, and consequently, several software programs have been developed for the automatic calculation of EPG variables. Here we present a new user-friendly Excel Workbook that uses a standardized list of EPG variables and follows expert guidelines for calculating them. The program developed in Visual Basic for Applications (VBA) is a step up from the existing software and allows easy data analysis and interpretation. It also includes a novel option for dealing with the common problem of "truncated"-waveforms artificially terminated by the end of recording. The only requirement to run the program is Microsoft Excel software running under a PC environment. The Workbook was validated by calculating variables from EPG recordings of aphids and psyllids and the results obtained were compared with those of existing software such as the Sarria Workbook. Our EPG Workbook provides researchers with a reliable and standardized tool for the automatic calculation of up to 127 EPG variables from phloem-sap-sucking insects.


Assuntos
Comportamento Alimentar , Software , Animais , Afídeos/fisiologia , Hemípteros/fisiologia
18.
Hong Kong Med J ; 30(1): 33-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369958

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic created many challenges for Hong Kong residents attempting to maintain healthy lifestyle habits. This study aimed to measure the prevalences of unhealthy dietary habits and physical inactivity levels in Hong Kong Chinese, identify associated factors, and conduct a time trend analysis during the third wave of the COVID-19 pandemic. METHODS: A cross-sectional telephone survey was conducted in Hong Kong by simple random sampling. The survey comprised socio-demographic characteristics, clinical information, the Hong Kong Diet Score (HKDS), smoking and alcohol consumption, and a Chinese version of the International Physical Activity Questionnaire Short Form. The composite outcome was low HKDS, physical inactivity, smoking, and alcohol consumption. We used 14 Health Behaviour Survey reports from 2003 to 2019 to establish a trend analysis regarding fruit and vegetable consumption, physical activity level, smoking, and alcohol consumption. RESULTS: We performed 1500 complete telephone surveys with a response rate of 58.8%. Most participants were older adults (≥65 years, 66.7%), women (65.6%), and married (77.9%). The HKDS was significantly lower in men, single individuals, low-income participants, alcohol drinkers, and patients with diabetes mellitus or renal disease. Participants who were single, undergoing long-term management of medical diseases, or had diabetes or renal diseases exhibited greater likelihood of physical inactivity. CONCLUSION: Prevalences of unhealthy lifestyle habits were high among men, single individuals, and chronic disease patients during the third wave of the COVID-19 pandemic in Hong Kong. The adoption of physical activity habits tended to decrease in the past two decades.


Assuntos
COVID-19 , Pandemias , Masculino , Humanos , Feminino , Idoso , Estudos Transversais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Exercício Físico , Hong Kong/epidemiologia , Comportamento Alimentar
19.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793830

RESUMO

Within the current process of large-scale dairy-cattle breeding, to address the problems of low recognition-accuracy and significant recognition-error associated with existing visual methods, we propose a method for recognizing the feeding behavior of dairy cows, one based on an improved RefineMask instance-segmentation model, and using high-quality detection and segmentation results to realize the recognition of the feeding behavior of dairy cows. Firstly, the input features are better extracted by incorporating the convolutional block attention module into the residual module of the feature extraction network. Secondly, an efficient channel attention module is incorporated into the neck design to achieve efficient integration of feature extraction while avoiding the surge of parameter volume computation. Subsequently, the GIoU loss function is used to increase the area of the prediction frame to optimize the convergence speed of the loss function, thus improving the regression accuracy. Finally, the logic of using mask information to recognize foraging behavior was designed, and the accurate recognition of foraging behavior was achieved according to the segmentation results of the model. We constructed, trained, and tested a cow dataset consisting of 1000 images from 50 different individual cows at peak feeding times. The method's effectiveness, robustness, and accuracy were verified by comparing it with example segmentation algorithms such as MSRCNN, Point_Rend, Cascade_Mask, and ConvNet_V2. The experimental results show that the accuracy of the improved RefineMask algorithm in recognizing the bounding box and accurately determining the segmentation mask is 98.3%, which is higher than that of the benchmark model by 0.7 percentage points; for this, the model parameter count size was 49.96 M, which meets the practical needs of local deployment. In addition, the technologies under study performed well in a variety of scenarios and adapted to various light environments; this research can provide technical support for the analysis of the relationship between cow feeding behavior and feed intake during peak feeding periods.


Assuntos
Algoritmos , Comportamento Alimentar , Bovinos , Animais , Comportamento Alimentar/fisiologia , Feminino , Redes Neurais de Computação , Indústria de Laticínios/métodos
20.
J Fish Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922948

RESUMO

This paper presents the observations of predation by the grouper Epinephelus quoyanus on sea turtle hatchlings in Chagar Hutang bay, Redang Island, Malaysia. Two of the eight collected specimens had hatchlings in their guts, whereas the remaining specimens had empty stomachs. This field report provides an in-depth understanding of the E. quoyanus diet and new insights into its feeding behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA