RESUMO
The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.
Assuntos
Bactérias/metabolismo , Desenvolvimento Embrionário , Feto/citologia , Feto/microbiologia , Leucócitos/citologia , Adulto , Bactérias/genética , Bactérias/ultraestrutura , Proliferação de Células , Células Dendríticas/metabolismo , Feminino , Feto/ultraestrutura , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/ultraestrutura , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Viabilidade Microbiana , Gravidez , Segundo Trimestre da Gravidez , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Linfócitos T/citologiaRESUMO
The switch from primitive to definitive hematopoiesis occurs early in development through the emergence of a wave of definitive hematopoietic stem cells from intraembryonic sites, supplanting the original primitive population of extraembryonically derived stem cells. When it became clear that unique features of the fetal immune system could not be reproduced by adult stem cells, it was hypothesized that a lineage of definitive fetal hematopoietic stem cells predominates antenatally, ultimately giving way to an emerging wave of adult stem cells and resulting in a "layered" fetal immune system consisting of overlapping lineages. It is now clear, however, that the transition from human fetal-to-adult T cell identity and function does not occur due to a binary switch between distinct fetal and adult lineages. Rather, recent evidence from single cell analysis suggests that during the latter half of fetal development a gradual, progressive transition occurs at the level of hematopoietic stem-progenitor cells (HSPCs) which is reflected in their T cell progeny. At a transcriptional level, clusters of genes are up- and down-regulated with sequenced timing, suggesting that the transition is under the control of master regulatory factors, including epigenetic modifiers. The net effect is still one of "molecular layering," that is, the continuous layering of iterative generations of HSPCs and T cells that arise through progressive changes in gene expression. This review will focus on recent discoveries that elucidate mechanisms of fetal T cell function and the transition from fetal to adult identity. The epigenetic landscape of fetal T cells facilitates their ability to fulfill the dominant fetal mandate of generating tolerance against self, maternal, and environmental antigens by supporting their predisposition to differentiate into CD25+ FoxP3+ regulatory T cells (TRegs ). We will explore how the coordinated development of two complementary populations of fetal T cells-conventional T cells dominated by TRegs and tissue-associated memory effector cells with innate-like inflammatory potential-is crucial not only for maintaining intrauterine immune quiescence but also for facilitating an immune response that is appropriately tuned for the bombardment of antigen stimulation that happens at birth.
Assuntos
Células-Tronco Hematopoéticas , Fatores de Transcrição , Recém-Nascido , Humanos , Linhagem da Célula , Hematopoese/fisiologiaRESUMO
Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.
Assuntos
Desenvolvimento Fetal , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Trofoblastos/metabolismo , Transdução de Sinais , Retardo do Crescimento FetalRESUMO
Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a+Eomes+ subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a+Eomes+ NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy.
Assuntos
Aborto Habitual/imunologia , Transferência Adotiva , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Desenvolvimento Fetal/imunologia , Retardo do Crescimento Fetal/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Matadoras Naturais/transplante , Aborto Habitual/genética , Aborto Habitual/patologia , Adulto , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Microambiente Celular , Citocinas/genética , Citocinas/imunologia , Decídua/imunologia , Decídua/patologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/imunologia , Retardo do Crescimento Fetal/patologia , Feto , Regulação da Expressão Gênica no Desenvolvimento , Antígenos HLA-G/genética , Antígenos HLA-G/imunologia , Humanos , Integrina alfa1/genética , Integrina alfa1/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologiaRESUMO
Emerging evidence indicates that parental diseases can impact the health of subsequent generations through epigenetic inheritance. Recently, it was shown that maternal diabetes alters the metaphase II oocyte transcriptome, causing metabolic dysfunction in offspring. However, type 1 diabetes (T1D) mouse models frequently utilized in previous studies may be subject to several confounding factors due to severe hyperglycemia. This limits clinical translatability given improvements in glycemic control for T1D subjects. Here, we optimize a T1D mouse model to investigate the effects of appropriately managed maternal glycemic levels on oocytes and intrauterine development. We show that diabetic mice with appropriate glycemic control exhibit better long-term health, including maintenance of the oocyte transcriptome and chromatin accessibility. We further show that human oocytes undergoing in vitro maturation challenged with mildly increased levels of glucose, reflecting appropriate glycemic management, also retain their transcriptome. However, fetal growth and placental function are affected in mice despite appropriate glycemic control, suggesting the uterine environment rather than the germline as a pathological factor in developmental programming in appropriately managed diabetes.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Humanos , Feminino , Gravidez , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Placenta , Hiperglicemia/genética , Hiperglicemia/metabolismo , Oócitos/metabolismo , Modelos Animais de DoençasRESUMO
Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.
Assuntos
Animais Recém-Nascidos , Apoptose , Miócitos Cardíacos , Tapsigargina , Animais , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovinos , Tapsigargina/farmacologia , Feminino , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fosforilação , Chaperona BiP do Retículo Endoplasmático , Gravidez , Resposta a Proteínas não Dobradas , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacosRESUMO
STUDY QUESTION: What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER: Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY: Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION: A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS: At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE: Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION: Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S): This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Biomarcadores , Ácidos Ftálicos , Placenta , Humanos , Feminino , Ácidos Ftálicos/urina , Gravidez , Placenta/metabolismo , Placenta/diagnóstico por imagem , Biomarcadores/urina , Adulto , Estudos Longitudinais , Exposição Materna/efeitos adversos , Estudos Prospectivos , Ultrassonografia Pré-Natal , Calcinose/urina , Calcinose/induzido quimicamente , Calcinose/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/efeitos dos fármacos , Adulto JovemRESUMO
Increasing placental perfusion (PP) could improve outcomes of growth-restricted fetuses. One way of increasing PP may be by using phosphodiesterase (PDE)-5 inhibitors, which induce vasodilatation of vascular beds. We used a combination of clinically relevant magnetic resonance imaging (MRI) techniques to characterize the impact that tadalafil infusion has on maternal, placental and fetal circulations. At 116-117 days' gestational age (dGA; term, 150 days), pregnant ewes (n = 6) underwent fetal catheterization surgery. At 120-123 dGA ewes were anaesthetized and MRI scans were performed during three acquisition windows: a basal state and then â¼15-75 min (TAD 1) and â¼75-135 min (TAD 2) post maternal administration (24 mg; intravenous bolus) of tadalafil. Phase contrast MRI and T2 oximetry were used to measure blood flow and oxygen delivery. Placental diffusion and PP were assessed using the Diffusion-Relaxation Combined Imaging for Detailed Placental Evaluation-'DECIDE' technique. Uterine artery (UtA) blood flow when normalized to maternal left ventricular cardiac output (LVCO) was reduced in both TAD periods. DECIDE imaging found no impact of tadalafil on placental diffusivity or fetoplacental blood volume fraction. Maternal-placental blood volume fraction was increased in the TAD 2 period. Fetal D O 2 ${D_{{{\mathrm{O}}_2}}}$ and V Ì O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ were not affected by maternal tadalafil administration. Maternal tadalafil administration did not increase UtA blood flow and thus may not be an effective vasodilator at the level of the UtAs. The increased maternal-placental blood volume fraction may indicate local vasodilatation of the maternal intervillous space, which may have compensated for the reduced proportion of UtA D O 2 ${D_{{{\mathrm{O}}_2}}}$ .
Assuntos
Oxigênio , Placenta , Circulação Placentária , Tadalafila , Artéria Uterina , Animais , Feminino , Tadalafila/farmacologia , Tadalafila/administração & dosagem , Gravidez , Ovinos , Artéria Uterina/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/irrigação sanguínea , Circulação Placentária/efeitos dos fármacos , Oxigênio/sangue , Fluxo Sanguíneo Regional/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/administração & dosagem , Imageamento por Ressonância Magnética , Feto/irrigação sanguínea , Feto/efeitos dos fármacosRESUMO
Embryofetal development (EFD) studies are performed to characterize risk of drugs in pregnant women and on embryofetal development. In line with the ICH S5(R3) guideline, these studies are generally conducted in one rodent and one non-rodent species, commonly rats and rabbits. However, the added value of conducting EFD studies in two species to risk assessment is debatable. In this study, rat and rabbit EFD studies were evaluated to analyze the added value of a second species. Information on rat and rabbit EFD studies conducted for human pharmaceuticals submitted for marketing authorization to the European Medicines Agency between 2004 and 2022 was collected from the database of the Dutch Medicines Evaluation Board, along with EFD studies conducted for known human teratogens. In total, 369 compounds were included in the database. For 55.6% of the compounds similar effects were observed in rat and rabbit EFD studies. Discordance was observed for 44.6% of compounds. Discordance could often be explained based on occurrence of maternal toxicity or the compound's mechanism of action. For other compounds, discordance was considered of limited clinical relevance due to high exposure margins or less concerning EFD toxicity. For 6.2%, discordance could not be explained and was considered clinically relevant. Furthermore, for specific therapeutic classes, concordance between rat and rabbit could vary. In conclusion, in many cases the added value of conducting EFD studies in two species is limited. These data could help identify scenarios in which (additional) EFD studies could be waived or create a weight-of-evidence model to determine the need for (additional) EFD studies.
Assuntos
Desenvolvimento Embrionário , Teratogênicos , Animais , Coelhos , Ratos , Gravidez , Feminino , Desenvolvimento Embrionário/efeitos dos fármacos , Teratogênicos/toxicidade , Medição de Risco , Humanos , Testes de Toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Especificidade da EspécieRESUMO
Fetal programming may arise from prenatal exposure and increase the risk of diseases later in life, potentially mediated by the placenta. The objective of this systematic review was to summarize and critically evaluate publications describing associations between human placental changes and risk of atopic disorders during childhood. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. The inclusion criteria were original research articles or case reports written in English describing a human placental change in relation to disease occurring in offspring during childhood. The MEDLINE and EMBASE databases were searched for eligible studies. Risk of bias (RoB) was assessed using the ROBINS-I tool. The results were pooled both in a narrative way and by a meta-analysis. Nineteen studies were included (n = 12,997 participants). All studies had an overall serious RoB, and publication bias could not be completely ruled out. However, five studies showed that histological chorioamnionitis in preterm-born children was associated with asthma-related problems (pooled odds ratio = 3.25 (95% confidence interval = 2.22-4.75)). In term-born children, a large placenta (≥750 g) increased the risk of being prescribed anti-asthma medications during the first year of life. Placental histone acetylation, DNA methylation, and gene expression differences were found to be associated with different atopic disorders in term-born children. There is some evidence supporting the idea that the placenta can mediate an increased risk of atopic disorders in children. However, further studies are needed to validate the findings, properly control for confounders, and examine potential mechanisms.
Assuntos
Placenta , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Asma/epidemiologia , Corioamnionite/epidemiologia , Desenvolvimento Fetal , Hipersensibilidade Imediata/epidemiologia , Placenta/patologia , Efeitos Tardios da Exposição Pré-NatalRESUMO
OBJECTIVE: To evaluate multisite effects on fetal brain MRI. Specifically, to identify crucial acquisition factors affecting fetal brain structural measurements and developmental patterns, while assessing the effectiveness of existing harmonization methods in mitigating site effects. MATERIALS AND METHODS: Between May 2017 and March 2022, T2-weighted fast spin-echo sequences in-utero MRI were performed on healthy fetuses from retrospectively recruited pregnant volunteers on four different scanners at four sites. A generalized additive model (GAM) was used to quantitatively assess site effects, including field strength (FS), manufacturer (M), in-plane resolution (R), and slice thickness (ST), on subcortical volume and cortical morphological measurements, including cortical thickness, curvature, and sulcal depth. Growth models were selected to elucidate the developmental trajectories of these morphological measurements. Welch's test was performed to evaluate the influence of site effects on developmental trajectories. The comBat-GAM harmonization method was applied to mitigate site-related biases. RESULTS: The final analytic sample consisted of 340 MRI scans from 218 fetuses (mean GA, 30.1 weeks ± 4.4 [range, 21.7-40 weeks]). GAM results showed that lower FS and lower spatial resolution led to overestimations in selected brain regions of subcortical volumes and cortical morphological measurements. Only the peak cortical thickness in developmental trajectories was significantly influenced by the effects of FS and R. Notably, ComBat-GAM harmonization effectively removed site effects while preserving developmental patterns. CONCLUSION: Our findings pinpointed the key acquisition factors in in-utero fetal brain MRI and underscored the necessity of data harmonization when pooling multisite data for fetal brain morphology investigations. KEY POINTS: Question How do specific site MRI acquisition factors affect fetal brain imaging? Finding Lower FS and spatial resolution overestimated subcortical volumes and cortical measurements. Cortical thickness in developmental trajectories was influenced by FS and in-plane resolution. Clinical relevance This study provides important guidelines for the fetal MRI community when scanning fetal brains and underscores the necessity of data harmonization of cross-center fetal studies.
RESUMO
OBJECTIVE: Organisms and cellular viability are of paramount importance to living creatures. Disruption of the balance between cell survival and apoptosis results in compromised viability and even carcinogenesis. One molecule involved in keeping this homeostasis is serum-glucocorticoid regulated kinase (SGK) 1. Emerging evidence points to a significant role of SGK1 in cell growth and survival, cell metabolism, reproduction, and life span, particularly in prenatal programming and reproductive senescence by the same token. Whether the hormone inducible SGK1 kinase is a major driver in the pathophysiological processes of prenatal programming and reproductive senescence? METHOD: The PubMed/Medline, Web of Science, Embase/Ovid, and Elsevier Science Direct literature databases were searched for articles in English focusing on SGK1 published up to July 2023 RESULT: Emerging evidence is accumulating pointing to a pathophysiological role of the ubiquitously expressed SGK1 in the cellular and organismal viability. Under the regulation of specific hormones, extracellular stimuli, and various signals, SGK1 is involved in several biological processes relevant to viability, including cell proliferation and survival, cell migration and differentiation. In line, SGK1 contributes to the development of germ cells, embryos, and fetuses, whereas SGK1 inhibition leads to abnormal gametogenesis, embryo loss, and truncated reproductive lifespan. CONCLUTION: SGK1 integrates a broad spectrum of effects to maintain the homeostasis of cell survival and apoptosis, conferring viability to multiple cell types as well as both simple and complex organisms, and thus ensuring appropriate prenatal development and reproductive lifespan.
Assuntos
Glucocorticoides , Proteínas Imediatamente Precoces , Gravidez , Feminino , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , ReproduçãoRESUMO
OBJECTIVE: To investigate the diagnostic yield of trio whole-genome sequencing (WGS) in fetuses with various congenital malformations referred to a tertiary center for prenatal diagnosis. METHODS: In this prospective study, 50 pregnancies with different congenital malformations, negative for trisomies and causative copy-number variants, were analyzed further with fetal-parental trio WGS analysis. Parents were eligible for inclusion if they accepted further investigation following the detection of isolated or multiple malformations on prenatal ultrasound. Cases with isolated increased nuchal translucency, gamete donation or multiple pregnancy were excluded. WGS with the Illumina Inc. 30× polymerase-chain-reaction-free short-read sequencing included analysis of single-nucleotide variants, insertions and deletions, structural variants, short tandem repeats and copy-number identification of SMN1 and SMN2 genes. RESULTS: A molecular diagnosis was achieved in 13/50 (26%) cases. Causative sequence variants were identified in 12 genes: FGFR3 (n = 2), ACTA1 (n = 1), CDH2 (n = 1), COL1A2 (n = 1), DHCR7 (n = 1), EYA1 (n = 1), FBXO11 (n = 1), FRAS1 (n = 1), L1CAM (n = 1), OFD1 (n = 1), PDHA1 (n = 1) and SOX9 (n = 1). The phenotypes of the cases were divided into different groups, with the following diagnostic yields: skeletal malformation (4/9 (44%)), multisystem malformation (3/7 (43%)), central nervous system malformation (5/15 (33%)) and thoracic malformation (1/10 (10%)). Additionally, two cases carried variants that were considered potentially clinically relevant, even though they were assessed as variants of uncertain significance, according to the guidelines provided by the American College of Medical Genetics and Genomics. Overall, we identified a causative or potentially clinically relevant variant in 15/50 (30%) cases. CONCLUSIONS: We demonstrate a diagnostic yield of 26% with clinical WGS in prenatally detected congenital malformations. This study emphasizes the benefits that WGS can bring to the diagnosis of fetal structural anomalies. It is important to note that causative chromosomal aberrations were excluded from our cohort before WGS. As chromosomal aberrations are a well-known cause of prenatally detected congenital malformations, future studies using WGS as a primary diagnostic test, including assessment of chromosomal aberrations, may show that the detection rate exceeds the diagnostic yield of this study. WGS can add clinically relevant information, explaining the underlying cause of the fetal anomaly, which will provide information concerning the specific prognosis of the condition, as well as estimate the risk of recurrence. A genetic diagnosis can also provide more reproductive choice for future pregnancies. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Anormalidades Congênitas , Sequenciamento Completo do Genoma , Humanos , Feminino , Estudos Prospectivos , Gravidez , Sequenciamento Completo do Genoma/estatística & dados numéricos , Anormalidades Congênitas/genética , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/diagnóstico , Adulto , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/estatística & dados numéricos , Ultrassonografia Pré-Natal/estatística & dados numéricos , Variações do Número de Cópias de DNARESUMO
PURPOSE: This systematic review aimed to determine the effects of maternal exposure to bisphosphonates (BPs) during pregnancy on neonatal outcomes. It aimed to disclosfe the impact of BPs on neonates and identify aspects that require further investigation. METHODS: A comprehensive search of PubMed, Science Direct, LILACS, EMBASE, and Web of Science was conducted until August 2022, with no time restrictions. The selection criteria included studies published in English that evaluated pregnant women who were exposed to BPs. RESULTS: From an initial pool of 2169 studies, 13 met the inclusion criteria for this systematic review. These studies collectively included 106 women (108 pregnancies) who were exposed to BPs either before orduring pregnancy. A summary of the key characteristics of the selected studies and the risk of bias assessment are provided. Exposure to BPs occurs at various stages of pregnancy, with different indications for BP treatment. The most frequently reported neonatal outcomes were spontaneous abortion, congenital malformations, hypocalcemia, preterm birth, and low birth weight. CONCLUSION: Although previous reports have linked BPs before or during pregnancy with adverse neonatal outcomes, these associations should be interpreted with caution. Given the complexity of these findings, further research is necessary to provide more definitive insights to guide clinical decisions regarding the use of BPs in pregnant women.
Assuntos
Conservadores da Densidade Óssea , Difosfonatos , Resultado da Gravidez , Humanos , Gravidez , Feminino , Difosfonatos/efeitos adversos , Difosfonatos/uso terapêutico , Difosfonatos/administração & dosagem , Recém-Nascido , Conservadores da Densidade Óssea/efeitos adversos , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/administração & dosagem , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/epidemiologia , Complicações na Gravidez/tratamento farmacológico , Nascimento PrematuroRESUMO
PURPOSE: Hyperemesis gravidarum has the potential to affect the long-term health of offspring. We examined whether maternal hyperemesis gravidarum was associated with the risk of hospitalization for childhood morbidity. METHODS: We conducted a longitudinal cohort study of 1,189,000 children born in Quebec, Canada, between April 2006 and March 2021. The main exposure measure was maternal hyperemesis gravidarum requiring hospitalization in the first or second trimester. The outcome was any pediatric admission between birth and 16 years of age, with follow-up ending in March 2022. We used Cox regression models adjusted for maternal and socioeconomic factors to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between maternal hyperemesis gravidarum and childhood hospitalization. RESULTS: Among 1,189,000 children, 6904 (0.6%) were exposed to maternal hyperemesis gravidarum. Hospitalization rates at age 16 years were higher for children exposed to hyperemesis gravidarum than unexposed children (47.6 vs 43.9 per 100 children). Relative to no exposure, hyperemesis gravidarum was associated with a 1.21 times greater risk of any hospitalization before 16 years (95% CI 1.17-1.26). Hyperemesis gravidarum was associated with hospitalization for neurologic (HR 1.50, 95% CI 1.32-1.71), developmental (HR 1.51, 95% CI 1.29-1.76), digestive (HR 1.40, 95% CI 1.30-1.52), and allergic disorders (HR 1.39, 95% CI 1.24-1.56). When contrasted with preeclampsia, hyperemesis gravidarum was a stronger risk factor for these outcomes. CONCLUSIONS: Maternal hyperemesis gravidarum is associated with an increased risk of childhood hospitalization, especially for neurologic, developmental, digestive, and atopic disorders. WHAT IS KNOWN: ⢠Hyperemesis gravidarum is associated with neurodevelopmental disorders in offspring. ⢠However, the effect of hyperemesis gravidarum on other childhood morbidity is unclear. WHAT IS NEW: ⢠In this longitudinal cohort study of 1.2 million children, maternal hyperemesis gravidarum was associated with a greater risk of hospitalization before age 16 years. ⢠Exposure to hyperemesis gravidarum was associated with developmental, neurologic, atopic, and digestive morbidity in childhood.
Assuntos
Hospitalização , Hiperêmese Gravídica , Humanos , Hiperêmese Gravídica/epidemiologia , Feminino , Gravidez , Estudos Longitudinais , Adolescente , Criança , Hospitalização/estatística & dados numéricos , Pré-Escolar , Lactente , Masculino , Quebeque/epidemiologia , Recém-Nascido , Adulto , Fatores de Risco , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos de CoortesRESUMO
BACKGROUND: Maternal nutrition impacts fetal growth and development. The Food Standards Australia New Zealand (FSANZ) guidelines recommend pregnant women consume 2-3 servings (224-336 g) of fish/seafood per week to support intake of long chain omega 3 fatty acids, given adequate consumption supports numerous health benefits including reduced risk of preterm and early preterm birth. Evidence indicates that pregnant women purposely lower their fish/seafood intake, largely due to fears of methylmercury exposure. The aim of this study was to explore pregnant women's knowledge, attitudes, and behaviours regarding their fish/seafood consumption during the antenatal period. METHODS: Semi-structured interviews were conducted between October 2018 and December 2020 among a purposive sample of 12 pregnant women from the Australian Capital Territory (ACT). The interviews were recorded, transcribed verbatim, and analysed using an interpretative phenomenological approach. Themes were developed on the women's lived experience related to fish/seafood knowledge, attitudes, and consumption behaviour. RESULTS: The most prominent finding was widespread non-adherence to fish/seafood consumption guidelines. This was largely owing to a lack of proactive health promotion related to the health benefits of fish/seafood throughout pregnancy, including the health promoting roles of long chain omega 3 fatty acids for fetal growth and development. Three themes were identified: nutrition knowledge; sources of health promotion; and barriers and enablers to fish/seafood consumption. CONCLUSIONS: To support adequate maternal consumption of fish/seafood throughout pregnancy, emphasis should be placed on the benefits of consuming this food group regularly. Additionally, pregnant women should receive education about the health promoting role of long chain omega 3 fatty acids. Dietitians are well placed to provide this information.
Assuntos
Ácidos Graxos Ômega-3 , Nascimento Prematuro , Recém-Nascido , Gravidez , Animais , Feminino , Humanos , Conhecimentos, Atitudes e Prática em Saúde , Gestantes , Austrália , Ácidos Graxos , Alimentos MarinhosRESUMO
INTRODUCTION: Restriction in the growth of the fetus is a leading cause of stillbirth, neonatal mortality, and short- and long-term morbidity. Documented existing scientific evidence have shown the effects of maternal drugs use, alcohol drinking, tobacco smoking, cocaine use and heroin use on fetal growth restriction. However, data is lacking on the effects of khat chewing during pregnancy on fetal growth status and newborn size at birth. Therefore, the aim of the present study was to measure the effect of chewing khat during pregnancy on fetal growth and size at birth in eastern Ethiopia. METHOD: A cohort study was conducted in selected health institutions in eastern Ethiopia. All pregnant women fulfilled the eligibility criteria in the selected health institutions was the source population. The calculated sample size of exposed and unexposed groups included in the study, in total, was 344. Data collection was performed prospectively by interviewers administered questionnaires, and anthropometric, clinical and ultrasound measurements. Data was analyzed using SPSS version 27 and STATA version 16 software. The survival analysis (cox proportional hazards model) and generalized linear model (GLM) for the binomial family analysis were performed to estimate the crude and adjusted relative risk and attributable risk (AR) with corresponding 95% CI of chewing khat on fetal growth restriction. The mediation effect has been examined through Generalized Structural Equation Modeling (GSEM) analysis using the Stata 'gsem' command. Statistically significant association was declared at p-value less than 5%. RESULTS: In the present study, the incidence of fetal growth restriction (FGR) among the study cohorts was 95 (29.7%); of this, 81 (85.3%) were among khat chewer cohorts. The relative risk of fetal growth restriction among khat chewer cohort mothers was significantly higher (aRR = 4.32; 95%CI 2.62-7.12). Moreover, the incidence of small for gestational age at birth among the present study cohorts was 100 (31.3%); 84 (84%) were from khat chewer cohorts' deliveries. More importantly, in the present study, 98.95% of the ultrasound-identified fetuses with FGR were found to be SGA at birth. Hence, in the current study, FGR was highly associated with SGA at birth. In additional analysis, the regression coefficient of khat chewing during pregnancy on fetal growth restriction has been decreased in size from path o, ß = 0.43, p < 0.001 to path o', ß = 0.32, p < 0.001, after adjusting for gestational hypertension and maternal anemia. CONCLUSION: In sum, the present study showed khat chewing during pregnancy is not simply affected the mothers, but it also affected the unborn fetuses. Therefore, the health workers as well as the local community and religious leaders should give high emphasis on provision of health education regarding the damage of chewing khat by pregnant mothers, with especial focus of the effects on their fetuses.
Assuntos
Catha , Retardo do Crescimento Fetal , Recém-Nascido , Humanos , Gravidez , Feminino , Catha/efeitos adversos , Retardo do Crescimento Fetal/epidemiologia , Retardo do Crescimento Fetal/etiologia , Peso ao Nascer , Mastigação , Etiópia/epidemiologia , Estudos de Coortes , Desenvolvimento Fetal , NatimortoRESUMO
Trophoblast cell syncytialization is essential for placental and fetal development. Abnormal trophoblast cell fusion leads to pregnancy pathologies, such as preeclampsia (PE), intrauterine growth restriction (IUGR), and miscarriage. 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in human peripheral blood synthesized by sterol 27-hydroxylase (CYP27A1) and is considered a critical mediator between hypercholesterolemia and a variety of related disorders. Gestational hypercholesterolemia was associated with spontaneous preterm delivery and low birth weight (LBW) in term infants, yet the mechanism is unclear. In this study, two trophoblast cell models and CD-1 mice were used to evaluate the effects of 27-OHC on trophoblast fusion during placenta development. Two different kinds of trophoblast cells received a dosage of 2.5, 5, or 10 uM 27-OHC. Three groups of pregnant mice were randomly assigned: control, full treatment (E0.5-E17.5), or late treatment (E13.5-E17.5). All mice received daily intraperitoneal injections of saline (control group) and 27-OHC (treatment group; 5.5 mg/kg). In vitro experiments, we found that 27-OHC inhibited trophoblast cell fusion in primary human trophoblasts (PHT) and forskolin (FSK)-induced BeWo cells. 27-OHC up-regulated the expression of the PI3K/AKT/mTOR signaling pathway-related proteins. Moreover, the PI3K inhibitor LY294002 rescued the inhibitory effect of 27-OHC. Inhibition of trophoblast cell fusion by 27-OHC was also observed in CD-1 mice. Furthermore, fetal weight and placental efficiency decreased and fetal blood vessel development was inhibited in pregnant mice treated with 27-OHC. This study was the first to prove that 27-OHC inhibits trophoblast cell fusion by Activating PI3K/AKT/mTOR signaling pathway. This study reveals a novel mechanism by which dyslipidemia during pregnancy results in adverse pregnancy outcomes.
Assuntos
Hidroxicolesteróis , Hipercolesterolemia , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Trofoblastos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
OBJECTIVE: To provide guidance on ultrasound review of the fetal perineum as well as fetal sex determination and disclosure. TARGET POPULATION: All individuals with ongoing pregnancies. OPTIONS: To include a review of the fetal perineum and determination of fetal sex as a component of the anatomic review during the routine second-trimester obstetric ultrasound and adhere to patient wishes regarding the disclosure of fetal sex. OUTCOMES: Prenatal diagnosis of fetal genital and sex anomalies or variants, parental and pregnancy caregiver knowledge of fetal sex, and adherence to parental wishes regarding knowledge of fetal sex. BENEFITS, HARMS, AND COSTS: Benefits include the potential to improve perinatal outcomes through the diagnosis of fetal genital anomalies and respect for women's rightful autonomy over personal health information. Potential harms or costs include a possible error in fetal sex determination, increased time for patients and health care providers in scheduling and performing the imaging, and the minimal risk of patients choosing to abort a pregnancy if the fetus is not the desired sex. EVIDENCE: Evidence built on the literature from the prior version of this statement through a review of international guidelines, Canadian legal rulings, and a literature search of PubMed and the Cochrane Database. English language research articles, review articles, and systematic reviews between January 1, 2003, and December 31, 2023, were included. Search terms included fetal ultrasonography, sex determination, and genitalia. The references of relevant articles were assessed, and applicable articles were included as well. INTENDED AUDIENCE: All care providers for pregnant individuals in Canada. SOCIAL MEDIA ABSTRACT: Fetal genitalia should be examined in pregnancy and the sex safely disclosed to the patient if they want this information. CONSENSUS-BASED GOOD PRACTICE STATEMENTS.
RESUMO
Choline and folate are critical nutrients for fetal brain development, but the timing of their influence during gestation has not been previously characterized. At different periods during gestation, choline stimulation of α7-nicotinic receptors facilitates conversion of γ-aminobutyric acid (GABA) receptors from excitatory to inhibitory and recruitment of GluR1-R2 receptors for faster excitatory responses to glutamate. The outcome of the fetal development of inhibition and excitation was assessed in 159 newborns by P50 cerebral auditory-evoked responses. Paired stimuli, S1, S2, were presented 500 msec apart. Higher P50 amplitude in response to S1 (P50S1microV) assesses excitation, and lower P50S2microV assesses inhibition in this paired-stimulus paradigm. Development of inhibition was related solely to maternal choline plasma concentration and folate supplementation at 16 weeks' gestation. Development of excitation was related only to maternal choline at 28 weeks. Higher maternal choline concentrations later in gestation did not compensate for earlier lower concentrations. At 4 years of age, increased behavior problems on the Child Behavior Checklist 1½-5yrs were related to both newborn inhibition and excitation. Incomplete development of inhibition and excitation associated with lower choline and folate during relatively brief periods of gestation thus has enduring effects on child development.