Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Trends Immunol ; 44(8): 568-570, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451906

RESUMO

The gut microbiome influences the response, resistance, and toxicity of cancer immunotherapy, but the underlying mechanisms remain unknown. Fidelle et al. identify intestinal MAdCAM-1 as a mechanistic target through which gut dysbiosis blunts antitumor immunity, with opportunities for putative therapeutic intervention.


Assuntos
Microbioma Gastrointestinal , Linfócitos T , Humanos , Imunoterapia , Disbiose
2.
Gastroenterology ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876174

RESUMO

Gastrointestinal biofilms are highly heterogenic and spatially organized polymicrobial communities that can expand and cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colon cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.

3.
Neurobiol Dis ; 192: 106423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286388

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono­oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.


Assuntos
Metilaminas , Acidente Vascular Cerebral , Humanos , Inflamação , Óxidos
4.
J Hepatol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554847

RESUMO

BACKGROUND & AIMS: Cystic fibrosis-related liver disease (CFLD) is a chronic cholangiopathy that increases morbidity and mortality in patients with CF. Current treatments are unsatisfactory, and incomplete understanding of CFLD pathogenesis hampers therapeutic development. We have previously shown that mouse CF cholangiocytes respond to lipopolysaccharide with excessive inflammation. Thus, we investigated the role of the gut-liver axis in the pathogenesis of CFLD. METHODS: Wild-type (WT), whole-body Cftr knockout (CFTR-KO) and gut-corrected (CFTR-KO-GC) mice were studied. Liver changes were assessed by immunohistochemistry and single-cell transcriptomics (single-cell RNA sequencing), inflammatory mediators were analysed by proteome array, faecal microbiota by 16S ribosomal RNA sequencing and gut permeability by FITC-dextran assay. RESULTS: The livers of CFTR-KO mice showed ductular proliferation and periportal inflammation, whereas livers of CFTR-KO-GC mice had no evident pathology. Single-cell RNA sequencing analysis of periportal cells showed increased presence of neutrophils, macrophages and T cells, and activation of pro-inflammatory and pathogen-mediated immune pathways in CFTR-KO livers, consistent with a response to gut-derived stimuli. CFTR-KO mice exhibited gut dysbiosis with enrichment of Enterobacteriaceae and Enterococcus spp., which was associated with increased intestinal permeability and mucosal inflammation, whereas gut dysbiosis and inflammation were absent in CFTR-KO-GC mice. Treatment with nonabsorbable antibiotics ameliorated intestinal permeability and liver inflammation in CFTR-KO mice. Faecal microbiota transfer from CFTR-KO to germ-free WT mice did not result in dysbiosis nor liver pathology, indicating that defective intestinal CFTR is required to maintain dysbiosis. CONCLUSION: Defective CFTR in the gut sustains a pathogenic microbiota, creates an inflammatory milieu, and alters intestinal permeability. These changes are necessary for the development of cholangiopathy. Restoring CFTR in the intestine or modulating the microbiota could be a promising strategy to prevent or attenuate liver disease. IMPACT AND IMPLICATIONS: Severe cystic fibrosis-related liver disease (CFLD) affects 10% of patients with cystic fibrosis (CF) and contributes to increased morbidity and mortality. Treatment options remain limited due to a lack of understanding of disease pathophysiology. The cystic fibrosis transmembrane conductance regulator (CFTR) mediates Cl- and HCO3- secretion in the biliary epithelium and its defective function is thought to cause cholestasis and excessive inflammatory responses in CF. However, our study in Cftr-knockout mice demonstrates that microbial dysbiosis, combined with increased intestinal permeability caused by defective CFTR in the intestinal mucosa, acts as a necessary co-factor for the development of CFLD-like liver pathology in mice. These findings uncover a major role for the gut microbiota in CFLD pathogenesis and call for further investigation and clinical validation to develop targeted therapeutic strategies acting on the gut-liver axis in CF.

5.
J Transl Med ; 22(1): 729, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103909

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS: We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in ß-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION: These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , China , Comorbidade , Citocinas/metabolismo , Disbiose/microbiologia , Disbiose/imunologia , Disbiose/complicações , População do Leste Asiático , Fezes/microbiologia , Imunidade , Síndrome Metabólica/microbiologia , Síndrome Metabólica/imunologia , Síndrome Metabólica/complicações , Esquizofrenia/microbiologia , Esquizofrenia/imunologia , Esquizofrenia/complicações
6.
Crit Rev Microbiol ; : 1-31, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602474

RESUMO

Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.

7.
J Med Virol ; 96(1): e29336, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193530

RESUMO

Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Camundongos , SARS-CoV-2 , RNA Ribossômico 16S/genética , Modelos Animais de Doenças
8.
Brain Behav Immun ; 119: 363-380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608741

RESUMO

The gut microbiota is altered in epilepsy and is emerging as a potential target for new therapies. We studied the effects of rifaximin, a gastrointestinal tract-specific antibiotic, on seizures and neuropathology and on alterations in the gut and its microbiota in a mouse model of temporal lobe epilepsy (TLE). Epilepsy was induced by intra-amygdala kainate injection causing status epilepticus (SE) in C57Bl6 adult male mice. Sham mice were injected with vehicle. Two cohorts of SE mice were fed a rifaximin-supplemented diet for 21 days, starting either at 24 h post-SE (early disease stage) or at day 51 post-SE (chronic disease stage). Corresponding groups of SE mice (one each disease stage) were fed a standard (control) diet. Cortical ECoG recording was done at each disease stage (24/7) for 21 days in all SE mice to measure the number and duration of spontaneous seizures during either rifaximin treatment or control diet. Then, epileptic mice ± rifaximin and respective sham mice were sacrificed and brain, gut and feces collected. Biospecimens were used for: (i) quantitative histological analysis of the gut structural and cellular components; (ii) markers of gut inflammation and intestinal barrier integrity by RTqPCR; (iii) 16S rRNA metagenomics analysis in feces. Hippocampal neuronal cell loss was assessed in epileptic mice killed in the early disease phase. Rifaximin administered for 21 days post-SE (early disease stage) reduced seizure duration (p < 0.01) and prevented hilar mossy cells loss in the hippocampus compared to epileptic mice fed a control diet. Epileptic mice fed a control diet showed a reduction of both villus height and villus height/crypt depth ratio (p < 0.01) and a decreased number of goblet cells (p < 0.01) in the duodenum, as well as increased macrophage (Iba1)-immunostaining in the jejunum (p < 0.05), compared to respective sham mice. Rifaximin's effect on seizures was associated with a reversal of gut structural and cellular changes, except for goblet cells which remained reduced. Seizure duration in epileptic mice was negatively correlated with the number of mossy cells (p < 0.01) and with villus height/crypt depth ratio (p < 0.05). Rifaximin-treated epileptic mice also showed increased tight junctions (occludin and ZO-1, p < 0.01) and decreased TNF mRNA expression (p < 0.01) in the duodenum compared to epileptic mice fed a control diet. Rifaximin administered for 21 days in chronic epileptic mice (chronic disease stage) did not change the number or duration of seizures compared to epileptic mice fed a control diet. Chronic epileptic mice fed a control diet showed an increased crypt depth (p < 0.05) and reduced villus height/crypt depth ratio (p < 0.01) compared to respective sham mice. Rifaximin treatment did not affect these intestinal changes. At both disease stages, rifaximin modified α- and ß-diversity in epileptic and sham mice compared to respective mice fed a control diet. The microbiota composition in epileptic mice, as well as the effects of rifaximin at the phylum, family and genus levels, depended on the stage of the disease. During the early disease phase, the abundance of specific taxa was positively correlated with seizure duration in epileptic mice. In conclusion, gut-related alterations reflecting a dysfunctional state, occur during epilepsy development in a TLE mouse model. A short-term treatment with rifaximin during the early phase of the disease, reduced seizure duration and neuropathology, and reversed some intestinal changes, strengthening the therapeutic effects of gut-based therapies in epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Rifaximina , Convulsões , Animais , Rifaximina/uso terapêutico , Rifaximina/farmacologia , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Convulsões/tratamento farmacológico , Epilepsia do Lobo Temporal/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Epilepsia/tratamento farmacológico
9.
Pharmacol Res ; 206: 107303, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002869

RESUMO

Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16 S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1ß, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.


Assuntos
Disbiose , Microbioma Gastrointestinal , Hipertensão , Rim , Camundongos Endogâmicos C57BL , Mutação , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Masculino , Rim/metabolismo , Hipertensão/metabolismo , Hipertensão/genética , Hipertensão/microbiologia , Camundongos , Angiotensina II , Translocação Bacteriana
10.
Pharmacol Res ; 206: 107278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908613

RESUMO

Accumulating evidence has proved the close association between alterations in gut microbiota and resistance to chemotherapeutic drugs. However, the potential roles of gut microbiota in regulating oxaliplatin sensitivity in gastric cancer (GC) have not been investigated before. We first found that antibiotic treatment diminished the therapeutic efficacy of oxaliplatin in a GC mouse model. Importantly, this effect could be transmitted to germ-free mice via fecal microbiota transplantation, indicating a potential role of gut microbiota modulation in oxaliplatin efficacy. Further, metagenomics data showed that Akkermansia muciniphila (A. muciniphila) ranked first among the bacterial species with decreased relative abundances after antibiotic treatment. Metabolically active A. muciniphila promotes oxaliplatin efficacy. As shown by metabolomics analysis, the metabolic pattern of gut microbiota was disrupted with significantly downregulated levels of pentadecanoic acid (PEA), and the use of PEA significantly promoted oxaliplatin efficacy. Mechanistically, FUBP1 positively regulated aerobic glycolysis of GC cells to hinder the therapeutic efficacy of oxaliplatin. A. muciniphila-derived PEA functioned as an inhibitory factor of glycolysis by directly antagonizing the activity of FUBP1, which potentiated GC responses to oxaliplatin. Our research suggested a key role for intestinal A. muciniphila and its metabolite PEA in promoting oxaliplatin efficacy, thus providing a new perspective for probiotic and prebiotic intervention in GC patients during chemotherapy.


Assuntos
Akkermansia , Antineoplásicos , Microbioma Gastrointestinal , Glicólise , Oxaliplatina , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Animais , Akkermansia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glicólise/efeitos dos fármacos , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
J Periodontal Res ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757372

RESUMO

AIM: Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS: Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS: The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION: Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.

12.
Nutr Neurosci ; 27(3): 262-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36877601

RESUMO

BACKGROUND: Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS: In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS: Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS: Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.


Assuntos
Depressão , Vitamina D , Animais , Humanos , Depressão/microbiologia , Vitamina D/uso terapêutico , Serotonina , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade , Vitaminas
13.
Appl Microbiol Biotechnol ; 108(1): 34, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183473

RESUMO

Altered gut microbiota has been connected to hepatocellular carcinoma (HCC) occurrence and advancement. This study was conducted to identify a gut microbiota signature in differentiating between viral-related HCC (Viral-HCC) and non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). Fecal specimens were obtained from 16 healthy controls, 33 patients with viral-HCC (17 and 16 cases with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, respectively), and 18 patients with NBNC-HCC. Compositions of fecal microbiota were assessed by 16S rRNA sequencing. Bioinformatic analysis was performed by the DADA2 pipeline in the R program. Significantly different genera from the top 50 relative abundance were used to classify between subgroups of HCC by the Random Forest algorithm. Our data demonstrated that the HCC group had a significantly decreased alpha-diversity and changed microbial composition in comparison with healthy controls. Within the top 50 relative abundance, there were 11 genera including Faecalibacterium, Agathobacter, and Coprococcus that were significantly enhanced in Viral-HCC, while 5 genera such as Bacteroides, Streptococcus, Ruminococcus gnavus group, Parabacteroides, and Erysipelatoclostridium were enhanced in NBNC-HCC. Compared to Viral-HCC, the NBNC-HCC subgroup significantly reduced various short-chain fatty acid-producing bacteria, as well as declined fecal butyrate but elevated plasma surrogate markers of microbial translocation. Based on the machine learning algorithm, a high diagnostic accuracy to classify HCC subgroups was achieved with an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.94. Collectively, these data revealed that gut dysbiosis was distinct according to etiological factors of HCC, which might play an essential role in hepatocarcinogenesis. These findings underscore the possible use of a gut microbiota signature for the diagnosis and therapeutic approaches regarding different subgroups of HCC. KEY POINTS: • Gut dysbiosis is connected to hepatocarcinogenesis and can be used as a novel biomarker. • Gut microbiota composition is significantly altered in different etiological factors of HCC. • Microbiota-based signature can accurately distinguish between Viral-HCC and NBNC-HCC.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Disbiose , RNA Ribossômico 16S/genética , Carcinogênese
14.
Genomics ; 115(3): 110629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100093

RESUMO

It remains a challenge to obtain the desired phenotypic traits in aquacultural production of Atlantic salmon, and part of the challenge might come from the effect that host-associated microorganisms have on the fish phenotype. To manipulate the microbiota towards the desired host traits, it is critical to understand the factors that shape it. The bacterial gut microbiota composition can vary greatly among fish, even when reared in the same closed system. While such microbiota differences can be linked to diseases, the molecular effect of disease on host-microbiota interactions and the potential involvement of epigenetic factors remain largely unknown. The aim of this study was to investigate the DNA methylation differences associated with a tenacibaculosis outbreak and microbiota displacement in the gut of Atlantic salmon. Using Whole Genome Bisulfite Sequencing (WGBS) of distal gut tissue from 20 salmon, we compared the genome-wide DNA methylation levels between uninfected individuals and sick fish suffering from tenacibaculosis and microbiota displacement. We discovered >19,000 differentially methylated cytosine sites, often located in differentially methylated regions, and aggregated around genes. The 68 genes connected to the most significant regions had functions related to the ulcerous disease such as epor and slc48a1a but also included prkcda and LOC106590732 whose orthologs are linked to microbiota changes in other species. Although the expression level was not analysed, our epigenetic analysis suggests specific genes potentially involved in host-microbiota interactions and more broadly it highlights the value of considering epigenetic factors in efforts to manipulate the microbiota of farmed fish.


Assuntos
Microbioma Gastrointestinal , Salmo salar , Epigenômica , Genótipo , Salmo salar/genética , Animais , Intestinos/microbiologia , Metilação de DNA , Genoma
15.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891768

RESUMO

Gut-dysbiosis-induced lipopolysaccharides (LPS) translocation into systemic circulation has been suggested to be implicated in nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to assess if oleuropein (OLE), a component of extra virgin olive oil, lowers high-fat-diet (HFD)-induced endotoxemia and, eventually, liver steatosis. An immunohistochemistry analysis of the intestine and liver was performed in (i) control mice (CTR; n = 15), (ii) high-fat-diet fed (HFD) mice (HFD; n = 16), and (iii) HFD mice treated with 6 µg/day of OLE for 30 days (HFD + OLE, n = 13). The HFD mice developed significant liver steatosis compared to the controls, an effect that was significantly reduced in the HFD + OLE-treated mice. The amount of hepatocyte LPS localization and the number of TLR4+ macrophages were higher in the HFD mice in the than controls and were lowered in the HFD + OLE-treated mice. The number of CD42b+ platelets was increased in the liver sinusoids of the HFD mice compared to the controls and decreased in the HFD + OLE-treated mice. Compared to the controls, the HFD-treated mice showed a high percentage of intestine PAS+ goblet cells, an increased length of intestinal crypts, LPS localization and TLR4+ expression, and occludin downregulation, an effect counteracted in the HFD + OLE-treated mice. The HFD-fed animals displayed increased systemic levels of LPS and zonulin, but they were reduced in the HFD + OLE-treated animals. It can be seen that OLE administration improves liver steatosis and inflammation in association with decreased LPS translocation into the systemic circulation, hepatocyte localization of LPS and TLR4 downregulation in HFD-induced mouse model of NAFLD.


Assuntos
Glucosídeos Iridoides , Iridoides , Lipopolissacarídeos , Hepatopatia Gordurosa não Alcoólica , Azeite de Oliva , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Glucosídeos Iridoides/farmacologia , Camundongos , Azeite de Oliva/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Iridoides/farmacologia , Regulação para Baixo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia
16.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063241

RESUMO

Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.


Assuntos
Analgésicos Opioides , Dor do Câncer , Disbiose , Microbioma Gastrointestinal , Humanos , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Animais , Neoplasias/complicações , Neoplasias/tratamento farmacológico
17.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126043

RESUMO

Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.


Assuntos
Disbiose , Microbioma Gastrointestinal , Inflamação , MicroRNAs , Insuficiência Renal Crônica , Sarcopenia , Sarcopenia/metabolismo , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/microbiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Animais
18.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338849

RESUMO

Distal Sensory Peripheral Neuropathy (DSP) is a common complication in HIV-infected individuals, leading to chronic pain and reduced quality of life. Even with antiretroviral therapy (ART), DSP persists, often prompting the use of opioid analgesics, which can paradoxically worsen symptoms through opioid-induced microbial dysbiosis. This study employs the HIV Tg26 mouse model to investigate HIV-DSP development and assess gut microbiome changes in response to chronic morphine treatment and ART using 16S rRNA sequencing. Our results reveal that chronic morphine and ART exacerbate HIV-DSP in Tg26 mice, primarily through mechanical pain pathways. As the gut microbiome may be involved in chronic pain persistence, microbiome analysis indicated distinct bacterial community changes between WT and Tg26 mice as well as morphine- and ART-induced microbial changes in the Tg26 mice. This study reveals the Tg26 mouse model to be a relevant system that can help elucidate the pathogenic mechanisms of the opioid- and ART-induced exacerbation of HIV-associated pain. Our results shed light on the intricate interplay between HIV infection, ART, opioid use, and the gut microbiome in chronic pain development. They hold implications for understanding the mechanisms underlying HIV-associated pain and microbial dysbiosis, with potential for future research focused on prevention and treatment strategies.


Assuntos
Dor Crônica , Infecções por HIV , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Morfina/efeitos adversos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Disbiose , RNA Ribossômico 16S/genética , Qualidade de Vida
19.
Neurobiol Dis ; 179: 106051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822548

RESUMO

Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15 weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7 weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.


Assuntos
Microbioma Gastrointestinal , Doença de Machado-Joseph , Ataxias Espinocerebelares , Masculino , Humanos , Feminino , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Camundongos Transgênicos , Fenótipo , Ataxina-3/genética
20.
BMC Med ; 21(1): 302, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559119

RESUMO

BACKGROUND: The results of human observational studies on the correlation between gut microbiota perturbations and polycystic ovary syndrome (PCOS) have been contradictory. This study aimed to perform the first systematic review and meta-analysis to evaluate the specificity of the gut microbiota in PCOS patients compared to healthy women. METHODS: Literature through May 22, 2023, was searched on PubMed, Web of Science, Medline, Embase, Cochrane Library, and Wiley Online Library databases. Unreported data in diversity indices were filled by downloading and processing raw sequencing data. Systematic review inclusion: original studies were eligible if they applied an observational case-control design, performed gut microbiota analysis and reported diversity or abundance measures, sampled general pre-menopausal women with PCOS, and are longitudinal studies with baseline comparison between PCOS patients and healthy females. Systematic review exclusion: studies that conducted interventional or longitudinal comparisons in the absence of a control group. Two researchers made abstract, full-text, and data extraction decisions, independently. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodologic quality. Hedge's g standardized mean difference (SMD), confidence intervals (CIs), and heterogeneity (I2) for alpha diversity were calculated. Qualitative syntheses of beta-diversity and microbe alterations were performed. RESULTS: Twenty-eight studies (n = 1022 patients, n = 928 control) that investigated gut microbiota by collecting stool samples were included, with 26 and 27 studies having provided alpha-diversity and beta-diversity results respectively. A significant decrease in microbial evenness and phylogenetic diversity was observed in PCOS patients when compared with control participants (Shannon index: SMD = - 0.27; 95% CI, - 0.37 to - 0.16; phylogenetic diversity: SMD = - 0.39; 95% CI, -- 0.74 to - 0.03). We also found that reported beta-diversity was inconsistent between studies. Despite heterogeneity in bacterial relative abundance, we observed depletion of Lachnospira and Prevotella and enrichment of Bacteroides, Parabacteroides, Lactobacillus, Fusobacterium, and Escherichia/Shigella in PCOS. Gut dysbiosis in PCOS, which might be characterized by the reduction of short-chain fatty acid (SCFA)-producing and bile-acid-metabolizing bacteria, suggests a shift in balance to favor pro-inflammatory rather than anti-inflammatory bacteria. CONCLUSIONS: Gut dysbiosis in PCOS is associated with decreased diversity and alterations in bacteria involved in microbiota-host crosstalk. TRIAL REGISTRATION: PROSPERO registration: CRD42021285206, May 22, 2023.


Assuntos
Microbioma Gastrointestinal , Microbiota , Síndrome do Ovário Policístico , Humanos , Feminino , Disbiose , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA