Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
BMC Infect Dis ; 24(1): 53, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183002

RESUMO

BACKGROUND: Understanding the burden of dyslipidemia and its associated factors among adult people living with HIV on dolutegravir (DTG) based anti-retroviral therapy (ART) is critical to provide clinical guidance and risk reduction strategies in our setting. METHODS: We conducted a cross-sectional study on adult people living with HIV on DTG based ART between July and August 2022 at Mengo Hospital, a private not for profit missionary hospital owned by the Church of Uganda. Dyslipidemia was defined as: Total cholesterol (TC) ≥ 5.2 mmol/l, or high-density lipoprotein (HDL) < 1 mmol/l for men and < 1.3 mmol/l for women, or triglycerides (TG) ≥ 1.7 mmol/l, and low-density lipoprotein (LDL) ≥ 3.4 mmol/l. A participant was considered to have dyslipidemia if they had any of the lipid profile parameters in the above ranges. Socio-demographic information, clinical data and behavioral characteristics were collected. Fasting lipid profile and fasting blood glucose levels were also measured. Bivariate and multivariate analyses were done using a generalized linear model regression of the Poisson family with a log link (modified Poisson) using robust standard errors since the prevalence of dyslipidemia was more than 10%. Adjusted prevalence ratios (PR) were reported with their 95% confidence intervals (CI). A p-value of less than 0.05 was considered statistically significant. RESULTS: A total of 341 participants were included. The prevalence of dyslipidemia was 78.0%, (95%CI:73.3-82.1). The highest prevalence was for low HDL (72.1%, 95%CI 67.1-76.7) followed by high TG (20.2%, 95%CI: 16.3-24.9), high TC (12.0%, 95%CI: 9.0-15.9) and high LDL (6.5%, 95%CI: 4.3-9.6). Female sex (aPR:1.55, 95%CI: 1.32-1.84, p < 0.001) and previous use of protease inhibitor (PI) based ART regimen (aPR:1.26, 95%CI: 1.04-1.53, p = 0.018) were significantly associated with dyslipidemia. CONCLUSION: We demonstrate that the prevalence of dyslipidemia is very high as it was present in more than three quarters of the study participants. Female sex and previous use of PI based ART regimen were significantly associated with dyslipidemia. Management of dyslipidemia should be integrated in the HIV treatment package and we recommend further inquiry into the temporal relationship between dyslipidemia and DTG among ART patients, if any.


Assuntos
Dislipidemias , Adulto , Masculino , Humanos , Feminino , Centros de Atenção Terciária , Uganda/epidemiologia , Estudos Transversais , Dislipidemias/epidemiologia , Lipoproteínas LDL
2.
Vasa ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017644

RESUMO

Background: Pseudoxanthoma elasticum (PXE) is a rare, inherited disease characterised by specific skin lesions, progressive loss of vision and early onset atherosclerosis. Atherosclerosis in PXE leads to an increased rate of vascular occlusion and severe intermittent claudication. Although genetically determined, the individual course of PXE is highly variable. Up to now, there is no sufficient parameter to identify individuals at risk of rapid disease progression. This present study focused the lipid profile of patients with PXE and its possible influence on the clinical severity of peripheral artery disease (PAD). Patients and methods: 112 patients with PXE were retrospectively screened. Patients without a complete lipid profile consisting of total cholesterol (TC), triglycerides (TGC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and Lipoprotein(a) (Lp[a]) where excluded as well as patients with already initiated lipid-lowering therapy. 52 patients met the inclusion criteria. An age-adjusted ordinal regression model was applied to determine the association of each lipid fraction with the severity of PAD assessed as Fontaine classification. Results: The lipid profile of patients with PXE was unremarkable (TGC: 135.8±105.8 mg/dl; TC: 172.5±44.4 mg/dl; HDL: 63.0±18.2 mg/dl; Lp[a]: 64.7±93.5 nmol/l). Ordinal regression showed a significant association of Lp(a) with the severity of PAD with an odds ratio of 1.01 (1.00-1.02; p = 0.004), whereas the other fractions of the lipid profile had no significant influence. Conclusions: This study provides the largest evaluation of blood lipids up to now and the first characterization of Lp(a) levels in patients with PXE. We were able to provide first evidence of a correlation between elevated levels of Lp(a) and the severity of PAD. The present results suggest that determination of Lp(a) in early stages of PXE could help to identify patients at risk of rapid disease progression and with the need of intensified walking exercise training.

3.
Cancer Immunol Immunother ; 72(11): 3683-3692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589756

RESUMO

BACKGROUND: Serum lipids have been identified to be used as prognostic biomarkers in several types of cancer. The primary objective of this study was to evaluate the prognostic value of serum lipids in metastatic colorectal cancer (mCRC) patients received anti-PD-1 therapy. METHODS: Pretreatment and the alteration of serum lipids, including apolipoprotein B (ApoB), apolipoprotein A-I (ApoA-I), cholesterol (CHO), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) after 2 courses of anti-PD1 therapy, were collected. Kaplan-Meier survival and cox regression analysis were performed to identify the prognostic values on overall survival (OS). Finally, those significant predictors from multivariate analysis were used to construct a nomogram for the prediction of prognosis. RESULTS: Baseline ApoB, CHO, HDL-C, LDL-C and early changes of ApoB, ApoA-I, HDL-C were statistically significant in the ROC analysis, showing good discriminatory ability in terms of OS. In multivariate analysis, treatment lines, lung metastasis, baseline HDL-C (low vs. high, HR, 6.30; 95% CI 1.82-21.80; P = 0.004) and early changes in HDL-C (reduction vs. elevation, HR, 4.59, 95% CI 1.20-17.63; P = 0.026) independently predicted OS. The area under the time-dependent ROC curve at 1 year, 2 years and 3 years consistently demonstrated the satisfactory accuracy and predictive value of the nomogram (AUC: 0.88, 0.85, 0.84). CONCLUSION: Overall, high level at baseline and an early elevation of HDL-C are correlated with better outcomes in mCRC patients treated with anti-PD1 therapy. The constructed nomogram indicated that the factors are strong predictive markers for response and prognosis to anti-PD-1 therapy in metastatic colorectal cancer.


Assuntos
Apolipoproteína A-I , Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Humanos , Apolipoproteínas B , Colesterol , HDL-Colesterol , LDL-Colesterol , Neoplasias Colorretais/tratamento farmacológico , Nomogramas , Prognóstico , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico
4.
Curr Atheroscler Rep ; 25(4): 155-166, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881278

RESUMO

PURPOSE OF REVIEW: Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS: Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dislipidemias , Humanos , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol , HDL-Colesterol , LDL-Colesterol , Dislipidemias/tratamento farmacológico , Lipoproteínas/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298334

RESUMO

The aim of this multicentric study was to assess the impacts of oxidative stress, inflammation, and the presence of small, dense, low-density lipoproteins (sdLDL) on the antioxidative function of high-density lipoprotein (HDL) subclasses and the distribution of paraoxonase-1 (PON1) activity within HDL in patients with ST-segment elevation acute myocardial infarction (STEMI). In 69 STEMI patients and 67 healthy control subjects, the lipoproteins' subclasses were separated using polyacrylamide gradient (3-31%) gel electrophoresis. The relative proportion of sdLDL and each HDL subclass was evaluated by measuring the areas under the peaks of densitometric scans. The distribution of the relative proportion of PON1 activity within the HDL subclasses (pPON1 within HDL) was estimated using the zymogram method. The STEMI patients had significantly lower proportions of HDL2a and HDL3a subclasses (p = 0.001 and p < 0.001, respectively) and lower pPON1 within HDL3b (p = 0.006), as well as higher proportions of HDL3b and HDL3c subclasses (p = 0.013 and p < 0.001, respectively) and higher pPON1 within HDL2 than the controls. Independent positive associations between sdLDL and pPON1 within HDL3a and between malondialdehyde (MDA) and pPON1 within HDL2b were shown in the STEMI group. The increased oxidative stress and increased proportion of sdLDL in STEMI are closely related to the compromised antioxidative function of small HDL3 particles and the altered pPON1 within HDL.


Assuntos
Lipoproteínas HDL , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Arildialquilfosfatase , Lipoproteínas , Lipoproteínas LDL
6.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445823

RESUMO

Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients.


Assuntos
Artrite Reumatoide , Inflamação , Humanos , HDL-Colesterol , Estudos Transversais , Estudos Prospectivos , Inflamação/complicações , Artrite Reumatoide/metabolismo , Colesterol , Lipoproteínas HDL
7.
Semin Cancer Biol ; 73: 169-177, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33130036

RESUMO

An inverse correlation between high-density lipoprotein cholesterol (HDL-C) and cancer risk has been shown by several epidemiological studies. Some studies have even suggested that HDL-C can be used as a prognostic marker in patients with certain types of cancer. However, whether reduced HDL-C level is a consequential or causal factor in the development and progression of cancer remains a controversial issue. In this review, we update and summarize recent advances that highlight the role of HDL and some of its components in prognosis, diagnosis and treatment of cancer.


Assuntos
HDL-Colesterol , Neoplasias , Animais , Humanos , Fatores de Risco
8.
J Biol Chem ; 297(3): 101019, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331945

RESUMO

Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.


Assuntos
Arildialquilfosfatase/antagonistas & inibidores , Lipídeos/química , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo , Arildialquilfosfatase/sangue , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismo
9.
J Biol Chem ; 296: 100100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208460

RESUMO

Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.


Assuntos
Colesterol/metabolismo , Ferroptose , Linfoma/metabolismo , Animais , Colesterol/genética , Humanos , Células Jurkat , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Células U937
10.
Biol Chem ; 403(3): 265-277, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34448387

RESUMO

Endothelial cell (EC) migration is essential for healing vascular injuries. Previous studies suggest that high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the major protein constituent of HDL, have endothelial healing functions. In cardiovascular disease, HDL is modified by myeloperoxidase (MPO) and N-homocysteine, resulting in apoA-I/apoA-II heterodimer and N-homocysteinylated (N-Hcy) apoA-I formation. This study investigated whether these modifications attenuate HDL-mediated endothelial healing. Wound healing assays were performed to analyze the effect of MPO-oxidized HDL and N-Hcy HDL in vitro. HDL obtained from patients with varying troponin I levels were also examined. MPO-oxidized HDL reduces EC migration compared to normal HDL in vitro, and N-Hcy HDL showed a decreasing trend toward EC migration. EC migration after treatment with HDL from patients was decreased compared to HDL isolated from healthy controls. Increased apoA-I/apoA-II heterodimer and N-Hcy apoA-I levels were also detected in HDL from patients. Wound healing cell migration was significantly negatively correlated with the ratio of apoA-I/apoA-II heterodimer to total apoA-II and N-Hcy apoA-I to total apoA-I. MPO-oxidized HDL containing apoA-I/apoA-II heterodimers had a weaker endothelial healing function than did normal HDL. These results indicate that MPO-oxidized HDL and N-Hcy HDL play a key role in the pathogenesis of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Lipoproteínas HDL , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II , Doenças Cardiovasculares/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo
11.
Mol Pharm ; 19(11): 4135-4148, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111986

RESUMO

The mechanistic details behind the activation of lecithin-cholesterol acyltransferase (LCAT) by apolipoprotein A-I (apoA-I) and its mimetic peptides are still enigmatic. Resolving the fundamental principles behind LCAT activation will facilitate the design of advanced HDL-mimetic therapeutic nanodiscs for LCAT deficiencies and coronary heart disease and for several targeted drug delivery applications. Here, we have combined coarse-grained molecular dynamics simulations with complementary experiments to gain mechanistic insight into how apoA-Imimetic peptide 22A and its variants tune LCAT activity in peptide-lipid nanodiscs. Our results highlight that peptide 22A forms transient antiparallel dimers in the rim of nanodiscs. The dimerization tendency considerably decreases with the removal of C-terminal lysine K22, which has also been shown to reduce the cholesterol esterification activity of LCAT. In addition, our simulations revealed that LCAT prefers to localize to the rim of nanodiscs in a manner that shields the membrane-binding domain (MBD), αA-αA', and the lid amino acids from the water phase, following previous experimental evidence. Meanwhile, the location and conformation of LCAT in the rim of nanodiscs are spatially more restricted when the active site covering the lid of LCAT is in the open form. The average location and spatial dimensions of LCAT in its open form were highly compatible with the electron microscopy images. All peptide 22A variants studied here had a specific interaction site in the open LCAT structure flanked by the lid and MBD domain. The bound peptides showed different tendencies to form antiparallel dimers and, interestingly, the temporal binding site occupancies of the peptide variants affected their in vitro ability to promote LCAT-mediated cholesterol esterification.


Assuntos
Apolipoproteína A-I , Fosfatidilcolina-Esterol O-Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Apolipoproteína A-I/química , Fosfolipídeos/metabolismo , Lecitinas , Esterol O-Aciltransferase/metabolismo , Lipoproteínas HDL/química , Domínio Catalítico , Peptídeos , Colesterol/metabolismo
12.
BMC Pregnancy Childbirth ; 22(1): 333, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436866

RESUMO

BACKGROUND: Lipids are crucial for fetal growth and development. Maternal lipid concentrations are associated with fetal growth in the second and third trimester of pregnancy and with birth outcomes. However, it is unknown if this association starts early in pregnancy or arises later during fetal development. The aim of this study was to investigate the association between the maternal lipid profile in early pregnancy and embryonic size. METHODS: We included 1474 women from the Generation R Study, a population based prospective birth cohort. Both embryonic size and the maternal lipid profile were measured between 10 weeks + 1 day and 13 weeks + 6 days gestational age. The maternal lipid profile was defined as total cholesterol, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), remnant cholesterol, non-high-density (non-HDL-c) lipoprotein cholesterol concentrations and the triglycerides/high-density lipoprotein (TG/HDL-c) ratio. Additionally, maternal glucose concentrations were assessed. Embryonic size was assessed using crown-rump length (CRL) measurements. Associations were studied with linear regression models, adjusted for confounding factors: maternal age, pre-pregnancy body mass index (BMI), parity, educational level, ethnicity, smoking and folic acid supplement use. RESULTS: Triglycerides and remnant cholesterol concentrations are positively associated with embryonic size (fully adjusted models, 0.17 SDS CRL: 95% CI 0.03; 0.30, and 0.17 SDS: 95% CI 0.04; 0.31 per 1 MoM increase, respectively). These associations were not present in women with normal weight (triglycerides and remnant cholesterol: fully adjusted model, 0.44 SDS: 95% CI 0.15; 0.72). Associations between maternal lipid concentrations and embryonic size were not attenuated after adjustment for glucose concentrations. Total cholesterol, HDL-c, LDL-c, non-HDL-c concentrations and the TG/HDL-c ratio were not associated with embryonic size. CONCLUSIONS: Higher triglycerides and remnant cholesterol concentrations in early pregnancy are associated with increased embryonic size, most notably in overweight women. TRIAL REGISTRATION: The study protocol has been approved by the Medical Ethics Committee of the Erasmus University Medical Centre (Erasmus MC), Rotterdam (MEC-2007-413). Written informed consent was obtained from all participants.


Assuntos
Colesterol , Lipídeos , HDL-Colesterol , LDL-Colesterol , Estudos de Coortes , Feminino , Glucose , Humanos , Lipoproteínas HDL , Masculino , Gravidez , Estudos Prospectivos , Triglicerídeos
13.
Lipids Health Dis ; 21(1): 34, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35369887

RESUMO

BACKGROUND: The impact of Helicobacter pylori (H. pylori) eradication on metabolism of lipid and the potential predictor of such changes remain unclear. METHODS: This study retrospectively included subjects who underwent at least two 13C urea breath tests between 2015 and 2019 at Wuhan Union Hospital. Based on two H. pylori 13C examination results, subjects were divided into propensity score-matched persistently negative (HPN), persistently positive (HPP), and eradication (HPE) groups. The changes in lipid measurements from before to after H. pylori eradication, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides, were compared within and between groups. Forty-two candidate factors were tested for their ability to predict lipid metabolism changes after H. pylori eradication. RESULTS: After propensity score matching, 3412 matched cases were analyzed. Within-group comparisons showed significantly decreased HDL (P <  0.001) and increased LDL (P <  0.001) at the second examination in both the HPE and HPP groups. Between-group comparisons showed that the HDL decrease of the HPE group was significantly larger and smaller when compared with the HPN (P = 0.001) and HPP (P = 0.004) group, respectively. Uni- and multivariate analyses showed that low diastolic blood pressure (DBP) (P = 0.002) and high mean platelet volume (MPV) (P = 0.001) before eradication were associated with increased HDL after eradication. Low total protein (TP) (P <  0.001) was associated with decreased LDL after eradication. CONCLUSIONS: Compared with sustained H. pylori infectious states, H. pylori eradication alleviated the lipid metabolism deterioration but did not restore it to the uninfected level within 1.5 years after eradication. Patients with low DBP, high MPV, and low TP may reap a greater lipid-metabolism benefit from H. pylori eradication.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Infecções por Helicobacter/tratamento farmacológico , Humanos , Metabolismo dos Lipídeos , Pontuação de Propensão , Estudos Retrospectivos
14.
Adv Exp Med Biol ; 1377: 109-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575924

RESUMO

In this chapter, we summarize the relationship between circulating high-density lipoprotein (HDL) and atherosclerotic cardiovascular disease (ASCVD). HDL acts in many types of cells, such as endothelial cell, macrophage, T lymphocyte, etc. Recently, novel HDL-related therapies have been developed to treat ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Aterosclerose/terapia , Doenças Cardiovasculares/terapia , Humanos , Lipoproteínas HDL , Fatores de Risco
15.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498945

RESUMO

Low mineralization activity by human osteoblast cells (HOBs) indicates abnormal bone remodeling that potentially leads to osteoporosis. Oxidation, the most prominent form of high-density lipoprotein (HDL) modification, is suggested to affect bone mineralization through the inflammatory pathway. Adiponectin, which possesses anti-inflammatory activity, is postulated to have the ability to suppress the detrimental effects of oxidized HDL (oxHDL). This study aimed to investigate the effects of HDL before and after oxidation on markers of mineralization and inflammation. The protective effects of adiponectin on demineralization and inflammation induced by oxHDL were also investigated. OxHDL at 100 µg/mL protein had the highest inhibitory effect on mineralization, followed by lower calcium incorporation. OxHDL also had significantly lower expression of a mineralization marker (COL1A2) and higher expression of inflammatory markers (IL-6, TNF-α, and RELA proto-oncogene, NF-κß (p65)) compared to the unstimulated control group. These findings suggest that oxHDL reduces the mineralization activity of HOBs by increasing the expression of inflammatory markers. Interestingly, co-incubation of adiponectin and oxHDL in HOBs resulted in higher expression of mineralization markers (ALPL, COL1A2, BGLAP, and RUNX2) and significantly reduced all targeted inflammatory markers compared to the oxHDL groups. On the contrary, HDL increased the expression of mineralization markers (COL1A2 and STAT-3) and exhibited lower expression of inflammatory cytokines (IL-6 and TNF-α), proving the protective effect of HDL beyond the reverse cholesterol transport activity.


Assuntos
Adiponectina , Calcificação Fisiológica , Lipoproteínas HDL , Osteoblastos , Humanos , Adiponectina/farmacologia , Inflamação/metabolismo , Interleucina-6 , Lipoproteínas HDL/metabolismo , Fator de Necrose Tumoral alfa , Remodelação Óssea
16.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409326

RESUMO

The quantity of high-density lipoproteins (HDL) is represented as the serum HDL-C concentration (mg/dL), while the HDL quality manifests as the diverse features of protein and lipid content, extent of oxidation, and extent of glycation. The HDL functionality represents several performance metrics of HDL, such as antioxidant, anti-inflammatory, and cholesterol efflux activities. The quantity and quality of HDL can change during one's lifetime, depending on infection, disease, and lifestyle, such as dietary habits, exercise, and smoking. The quantity of HDL can change according to age and gender, such as puberty, middle-aged symptoms, climacteric, and the menopause. HDL-C can decrease during disease states, such as acute infection, chronic inflammation, and autoimmune disease, while it can be increased by regular aerobic exercise and healthy food consumption. Generally, high HDL-C at the normal level is associated with good HDL quality and functionality. Nevertheless, high HDL quantity is not always accompanied by good HDL quality or functionality. The HDL quality concerns the morphology of the HDL, such as particle size, shape, and number. The HDL quality also depends on the composition of the HDL, such as apolipoproteins (apoA-I, apoA-II, apoC-III, serum amyloid A, and α-synuclein), cholesterol, and triglyceride. The HDL quality is also associated with the extent of HDL modification, such as glycation and oxidation, resulting in the multimerization of apoA-I, and the aggregation leads to amyloidogenesis. The HDL quality frequently determines the HDL functionality, which depends on the attached antioxidant enzyme activity, such as the paraoxonase and cholesterol efflux activity. Conventional HDL functionality is regression, the removal of cholesterol from atherosclerotic lesions, and the removal of oxidized species in low-density lipoproteins (LDL). Recently, HDL functionality was reported to expand the removal of ß-amyloid plaque and inhibit α-synuclein aggregation in the brain to attenuate Alzheimer's disease and Parkinson's disease, respectively. More recently, HDL functionality has been associated with the susceptibility and recovery ability of coronavirus disease 2019 (COVID-19) by inhibiting the activity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The appearance of dysfunctional HDL is frequently associated with many acute infectious diseases and chronic aging-related diseases. An HDL can be a suitable biomarker to diagnose many diseases and their progression by monitoring the changes in its quantity and quality in terms of the antioxidant and anti-inflammatory abilities. An HDL can be a protein drug used for the removal of plaque and as a delivery vehicle for non-soluble drugs and genes. A dysfunctional HDL has poor HDL quality, such as a lower apoA-I content, lower antioxidant ability, smaller size, and ambiguous shape. The current review analyzes the recent advances in HDL quantity, quality, and functionality, depending on the health and disease state during one's lifetime.


Assuntos
COVID-19 , Lipoproteínas HDL , Anti-Inflamatórios , Antioxidantes/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Feminino , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Pessoa de Meia-Idade , SARS-CoV-2 , alfa-Sinucleína
17.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430470

RESUMO

Neutrophil extracellular traps (NETs) are found in patients with various diseases, including cardiovascular diseases. We previously reported that copper-oxidized low-density lipoprotein (oxLDL) promotes NET formation of neutrophils, and that the resulting NETs increase the inflammatory responses of endothelial cells. In this study, we investigated the effects of high-density lipoproteins (HDL) on NET formation. HL-60-derived neutrophils were treated with phorbol 12-myristate 13-acetate (PMA) and further incubated with oxLDL and various concentrations of HDL for 2 h. NET formation was evaluated by quantifying extracellular DNA and myeloperoxidase. We found that the addition of native HDL partially decreased NET formation of neutrophils induced by oxLDL. This effect of HDL was lost when HDL was oxidized. We showed that oxidized phosphatidylcholines and lysophosphatidylcholine, which are generated in oxLDL, promoted NET formation of PMA-primed neutrophils, and NET formation by these products was completely blocked by native HDL. Furthermore, we found that an electronegative subfraction of LDL, LDL(-), which is separated from human plasma and is thought to be an in vivo oxLDL, was capable of promoting NET formation. These results suggest that plasma lipoproteins and their oxidative modifications play multiple roles in promoting NET formation, and that HDL acts as a suppressor of this response.


Assuntos
Armadilhas Extracelulares , Lipoproteínas HDL , Humanos , Fosfolipídeos , Células Endoteliais , Lipoproteínas LDL/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
18.
J Lipid Res ; 62: 100004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410751

RESUMO

Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.


Assuntos
Apolipoproteína A-I
19.
J Proteome Res ; 20(11): 4974-4984, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34677978

RESUMO

High-density lipoprotein (HDL) is a heterogeneous mixture of blood-circulating multimolecular particles containing many different proteins, lipids, and RNAs. Recent advancements in mass spectrometry-based proteotype analysis show promise for the analysis of proteoforms across large patient cohorts. In order to create the required spectral libraries enabling these data-independent acquisition (DIA) strategies, HDL was isolated from the plasma of more than 300 patients with a multiplicity of physiological HDL states. HDL proteome spectral libraries consisting of 296 protein groups and more than 786 peptidoforms were established, and the performance of the DIA strategy was benchmarked for the detection of HDL proteotype differences between healthy individuals and a cohort of patients suffering from diabetes mellitus type 2 and/or coronary heart disease. Bioinformatic interrogation of the data using the generated spectral libraries showed that the DIA approach enabled robust HDL proteotype determination. HDL peptidoform analysis enabled by using spectral libraries allowed for the identification of post-translational modifications, such as in APOA1, which could affect HDL functionality. From a technical point of view, data analysis further shows that protein and peptide quantities are currently more discriminative between different HDL proteotypes than peptidoforms without further enrichment. Together, DIA-based HDL proteotyping enables the robust digitization of HDL proteotypes as a basis for the analysis of larger clinical cohorts.


Assuntos
Lipoproteínas HDL , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/análise , Proteoma/análise
20.
J Biol Chem ; 295(24): 8252-8261, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32358065

RESUMO

High-density lipoprotein (HDL) metabolism is facilitated in part by scavenger receptor class B, type 1 (SR-B1) that mediates HDL uptake into cells. Higher levels of HDL have been associated with protection in other diseases, however, its role in prostate cancer is not definitive. SR-B1 is up-regulated in prostate cancer tissue, suggesting a possible role of this receptor in tumor progression. Here, we report that knockout (KO) of SR-B1 in both human and mouse prostate cancer cell lines through CRISPR/Cas9-mediated genome editing reduces HDL uptake into the prostate cancer cells and reduces their proliferation in response to HDL. In vivo studies using syngeneic SR-B1 WT (SR-B1+/+) and SR-B1 KO (SR-B1-/-) prostate cancer cells in WT and apolipoprotein-AI KO (apoA1-KO) C57BL/6J mice revealed that WT hosts, containing higher levels of total and HDL-cholesterol, grew larger tumors than apoA1-KO hosts with lower levels of total and HDL-cholesterol. Furthermore, SR-B1-/- prostate cancer cells formed smaller tumors in WT hosts than SR-B1+/+ cells in the same host model. Increased tumor volume was overall associated with reduced survival. We conclude that knocking out SR-B1 in prostate cancer tumors reduces HDL-associated increases in prostate cancer cell proliferation and disease progression.


Assuntos
Progressão da Doença , Lipoproteínas HDL/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Depuradores Classe B/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA