Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.081
Filtrar
1.
Cell ; 185(23): 4376-4393.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318920

RESUMO

The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais
2.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107331

RESUMO

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Camundongos , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP
3.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595580

RESUMO

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Assuntos
Autofagia , Via de Sinalização Hippo , Animais , Camundongos , Sobrevivência Celular , Tamanho do Órgão
4.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606996

RESUMO

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferon gama/metabolismo , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
5.
Genes Dev ; 35(7-8): 512-527, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766982

RESUMO

Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Modelos Animais de Doenças , Fusão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Humanos , Camundongos , Transdução de Sinais/genética , Transativadores/genética
6.
Genes Dev ; 35(7-8): 495-511, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766984

RESUMO

Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Fusão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
7.
Trends Biochem Sci ; 49(8): 681-692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729842

RESUMO

Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo , Evolução Biológica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Evolução Molecular
8.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565949

RESUMO

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Feminino , Transativadores/metabolismo , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Linhagem Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Núcleo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115406

RESUMO

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Assuntos
Homeostase/fisiologia , Neurofibromina 2/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Via de Sinalização Hippo , Humanos , Camundongos , Neurofibromina 2/genética , Pressão Osmótica/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Sinalização YAP
10.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39077779

RESUMO

The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Proteínas do Citoesqueleto , Via de Sinalização Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animais , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Transdução de Sinais , Embrião de Mamíferos/metabolismo , Mutação/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte Proteico , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
11.
Genes Dev ; 33(13-14): 828-843, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171701

RESUMO

Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciação Celular/genética , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Citoesqueleto de Actina/metabolismo , Adenoviridae , Animais , Células Cultivadas , Células HEK293 , Humanos , Ratos , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
12.
J Cell Sci ; 137(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240353

RESUMO

The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.


Assuntos
Proteínas de Drosophila , Neoplasias , Animais , Adenosina Trifosfatases/metabolismo , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
13.
EMBO Rep ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271776

RESUMO

High grade serous ovarian carcinoma (HGSOC) is the most common and aggressive ovarian malignancy. Accumulating evidence indicates that HGSOC may originate from human fallopian tube epithelial cells (FTECs), although the exact pathogen(s) and/or molecular mechanism underlying the malignant transformation of FTECs is unclear. Here we show that human papillomavirus (HPV), which could reach FTECs via retrograde menstruation or sperm-carrying, interacts with the yes-associated protein 1 (YAP1) to drive the malignant transformation of FTECs. HPV prevents FTECs from natural replicative and YAP1-induced senescence, thereby promoting YAP1-induced malignant transformation of FTECs. HPV also stimulates proliferation and drives metastasis of YAP1-transformed FTECs. YAP1, in turn, stimulates the expression of the putative HPV receptors and suppresses the innate immune system to facilitate HPV acquisition. These findings provide critical clues for developing new strategies to prevent and treat HGSOC.

14.
EMBO Rep ; 25(8): 3574-3600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009833

RESUMO

RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ligação Proteica , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Mitocôndrias/metabolismo , Células HEK293 , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Transporte Proteico , Membrana Celular/metabolismo
15.
EMBO Rep ; 25(9): 3944-3969, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103676

RESUMO

The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Via de Sinalização Hippo , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipoilação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação
16.
Trends Biochem Sci ; 46(2): 154-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981815

RESUMO

Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.


Assuntos
Transdução de Sinais , Diferenciação Celular , Proliferação de Células
17.
Dev Biol ; 515: 160-168, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39067502

RESUMO

Germ cells mutant for bam or bgcn are locked in a germline stem cell (GSC)-like state, leading to tumor-like overgrowth in Drosophila ovaries. Our previous studies have demonstrated that germline overgrowth in bam mutants can be suppressed by defects in the miRNA pathway but enhanced by a null mutation in hippo. However, the genetic epistasis between the miRNA and Hippo pathways still remains unknown. Here, we determined that the miRNA pathway acts downstream of the Hippo pathway in regulating this process. Germ cells mutant for bam or bgcn and defective in both pathways divide very slowly, phenocopying those defective only in the miRNA pathway. In addition, we found that Yki, a key oncoprotein in the Hippo pathway, promotes the growth of both wild-type germ cells and bam mutant GSC-like cells. Like wild-type GSCs, bam mutant GSC-like cells predominantly stay in the G2 phase. Remarkably, many of those defective in the miRNA pathway are arrested before entering this phase. Furthermore, our studies identified bantam as a critical miRNA promoting germline overgrowth in bam or bgcn mutants. Taken together, these findings establish a genetic circuitry controlling Drosophila female germline overgrowth.


Assuntos
Proteínas de Drosophila , Células Germinativas , MicroRNAs , Ovário , Proteínas de Sinalização YAP , Animais , Feminino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Germinativas/metabolismo , Ovário/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação/genética , Transativadores/genética , Transativadores/metabolismo , DNA Helicases
18.
J Biol Chem ; 300(6): 107309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657867

RESUMO

Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Camundongos , Transdução de Sinais , Metástase Neoplásica , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Camundongos Nus , Carcinogênese/genética , Carcinogênese/metabolismo
19.
J Biol Chem ; 300(5): 107212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522513

RESUMO

As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.


Assuntos
Via de Sinalização Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Lipoilação , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas Supressoras de Tumor , Ubiquitinação
20.
Circulation ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185559

RESUMO

BACKGROUND: The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined. METHODS: We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and αMHC-MerCreMer (MCM); Yap-loxP/K265R mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration. RESULTS: We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K256 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm. CONCLUSIONS: After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA