Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Genomics ; 16(1): 214, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684607

RESUMO

BACKGROUND: Dendritic cells (DCs) are most potent antigen-processing cells and play key roles in host defense against Mycobacterium tuberculosis (MTB) infection. In this study, hub genes in DCs during MTB infection were first investigated using bioinformatics approaches and further validated in Monocyte-derived DCs. METHODS: Microarray datasets were obtained from Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) and immune infiltration analysis were performed to select suitable samples for further analysis. Differential analysis and functional enrichment analysis were conducted on DC samples, comparing live MTB-infected and non-infected (NI) groups. The CytoHubba plugin in Cytoscape was used to identify hub genes from the differentially expressed genes (DEGs). The expression of the hub genes was validated using two datasets and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in human monocyte-derived DCs. Enzyme-linked immunosorbent assay (ELISA) was used to validate interferon (IFN) secretion. Transcription factors (TFs) and microRNAs (miRNAs) that interact with the hub genes were predicted using prediction databases. The diagnostic value of the hub genes was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) values. RESULTS: A total of 1835 common DEGs among three comparison groups (18 h, 48 h, 72 h after MTB infection) were identified. Six DEGs (IFIT1, IFIT2, IFIT3, ISG15, MX1, and RSAD2) were determined as hub genes. Functions enrichment analysis revealed that all hub genes all related to IFN response. RT-qPCR showed that the expression levels of six hub genes were significantly increased after DC stimulated by live MTB. According to the results of ELISA, the secretion of IFN-γ, but not IFN-α/ß, was upregulated in MTB-stimulated DCs. AUC values of six hub genes ranged from 84 to 94% and AUC values of 5 joint indicators of two hub genes were higher than the two hub genes alone. CONCLUSION: The study identified 6 hub genes associated with IFN response pathway. These genes may serve as potential diagnostic biomarkers in tuberculosis (TB). The findings provide insights into the molecular mechanisms involved in the host immune response to MTB infection and highlight the diagnostic potential of these hub genes in TB.


Assuntos
Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/genética , Área Sob a Curva , Biologia Computacional , Bases de Dados Factuais , Células Dendríticas
2.
Cureus ; 15(11): e48824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106811

RESUMO

Background Cell-mediated immunity (CMI), or specifically T-cell-mediated immunity, is proven to remain largely preserved against the variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including Omicron. The persistence of cell-mediated immune response in individuals longitudinally followed up for an extended period remains largely unelucidated. To address this, the current study was planned to study whether the effect of cell-mediated immunity persists after an extended period of convalescence or vaccination. Methods Whole blood specimens of 150 selected participants were collected and tested for Anti-SARS-CoV-2 Interferon-gamma (IFN-γ) response. Ex vivo SARS-CoV-2-specific interferon-gamma Enzyme-linked Immunospot (IFN-γ ELISpot) assay was carried out to determine the levels of virus-specific IFN-γ producing cells in individual samples. Findings Out of all the samples tested for anti-SARS-CoV-2 T-cell-mediated IFN-γ response, 78.4% of samples were positive. The median (interquartile range) spots forming units (SFU) per million levels of SARS-CoV-2-specific IFN-γ producing cells of the vaccinated and diagnosed participants was 336 (138-474) while those who were vaccinated but did not have the disease diagnosis was 18 (0-102); the difference between the groups was statistically significant. Since almost all the participants were vaccinated, a similar pattern of significance was observed when the diagnosed and the never-diagnosed participants were compared, irrespective of their vaccination status. Interpretations Cell-mediated immunity against SARS-CoV-2 persisted, irrespective of age and sex of the participant, for more than six months of previous exposure. Participants who had a history of diagnosed COVID-19 infection had better T-cell response compared to those who had never been diagnosed, in spite of being vaccinated.

3.
Front Immunol ; 14: 1114131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936918

RESUMO

In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration: clinicaltrials.gov, identifier NCT04666025.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Linfócitos T , Humanos , SARS-CoV-2 , Doadores de Tecidos , Transplantados , Linfócitos T/imunologia , Vacinas contra COVID-19
4.
Mol Immunol ; 75: 168-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27294559

RESUMO

The T lymphocyte-mediated immune lung disease hypersensitivity pneumonitis (HP) in machinists is poorly understood for disease mechanisms and diagnosis due in part to lack of information on causative T-cell antigens of the etiological agent Mycobacterium immunogenum (MI). Therefore, overall objective of the current study was to identify T-cell reactive antigens of this recently recognized pathogen. In this direction, purified recombinant form of five of the seroreactive proteins (reported in our initial study), including three cell wall-associated (arbitrarily designated as antigens A through C) and two secretory (AgD & AgE), were examined for their potential to activate antigen-presenting cells (APCs) viz. alveolar macrophages and human monocyte-derived dendritic cells (DCs) and for T-cell reactivity. All five proteins strongly activated APCs by inducing inflammatory cytokines (TNF-α, IL-6 & IL-1α) and nitric oxide (NO), albeit to a varying extent (AgE≥AgD>AgB≥AgA≥AgC), implying their differential potential for activation of APCs. However, only two of the five proteins (AgA, AgD) showed significant T-cell response (T lymphocyte proliferation and IFN-γ secretion) when tested using sensitized T-cells from MI-induced HP mouse model. These antigens also activated the human naïve CD4(+) T cells in presence of autologous DCs as measured using ELISPOT for IFN-γ. Immuno-informatic analysis predicted that the identified T-cell antigens (AgA and AgD) bind more number of class I and class II HLA alleles as compared with the reference immuno-dominant antigens ESAT-6 and CFP-10 from the tuberculous mycobacterial species M. tuberculosis. Predicted human population coverage for the epitopes of AgA (90.87%) and AgD (88.09%) was also higher as compared to those for the reference antigens ESAT-6 (82.42%) and CFP-10 (80.21%). These two antigens were further predicted to be highly immunogenic for class I peptide MHC (pMHC) complex as compared to the reference antigens. Collectively, our results imply that AgA and AgD are T-cell antigens with a high HLA binding frequency as well as population coverage for HLA alleles. This first report on T-cell antigens and epitopes of M. immunogenum is significant as it is expected to open up avenues for understanding pathogenesis mechanisms and developing T-cell-based immunodiagnostic tools for this poorly investigated occupational lung disease.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Antígenos de Bactérias/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Mycobacterium/imunologia , Alveolite Alérgica Extrínseca/microbiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Separação Celular , ELISPOT , Humanos , Ativação Linfocitária/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Camundongos
5.
Vaccine ; 33(18): 2167-74, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25802183

RESUMO

Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.


Assuntos
Citotoxicidade Imunológica , Produtos do Gene gag/imunologia , Vírus da Rubéola/genética , Vacinas contra a SAIDS/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Produtos do Gene gag/genética , Vetores Genéticos , Imunidade Celular , Imunização Secundária , Macaca mulatta , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas de DNA/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA